Skip to main content
Log in

Searching for Constraints on Starobinsky’s Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Predictions of the f(R)-gravity model with a disappearing cosmological constant (Starobinsky’s model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky’s model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109MSun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015MSun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Clifford, Living Rev. Rel. 17, 4 (2014).

    Article  Google Scholar 

  2. B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. P. Abbott et al., Phys. Rev. Lett. 116, 221101 (2016).

    Article  ADS  Google Scholar 

  4. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, New Astron. 2, 43 (1997).

    Article  ADS  Google Scholar 

  5. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 288, 245 (1997).

    Article  ADS  Google Scholar 

  6. P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  7. Ya. B. Zel’dovich, Sov. Phys. Usp. 11, 381 (1968).

    Article  ADS  Google Scholar 

  8. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  9. M. H. Goroff and A. Sagnotti, Nucl. Phys. B 266, 709 (1986).

    Article  ADS  Google Scholar 

  10. C. P. Burgess, Living Rev. Rel. 7, 5 (2004).

    Article  Google Scholar 

  11. A. D. Linde, Lect. Notes Phys. 738, 1 (2008).

    Article  ADS  Google Scholar 

  12. S. Capozziello and M. de Laurentis, Phys. Rep. 509, 167 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Berti et al., Class. Quantum Grav. 32, 243001 (2015).

    Article  ADS  Google Scholar 

  15. A. de Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).

    Article  Google Scholar 

  16. V. Faraoni, Phys. Rev. D 72, 124005 (2005).

    Article  ADS  Google Scholar 

  17. A. A. Starobinsky, JETP Lett. 86, 157 (2007).

    Article  ADS  Google Scholar 

  18. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  19. S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003).

    Article  ADS  Google Scholar 

  20. S. Capozziello and M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).

    Article  ADS  Google Scholar 

  21. C. Charmousis, Lect. Notes Phys. 892, 25 (2015).

    Article  ADS  Google Scholar 

  22. J. Ntahompagaze, A. Abebe, and M. Mbonye, Int. J. Geom. Meth. Mod. Phys. 14, 1750107 (2017).

    Article  Google Scholar 

  23. G. Byrd, A. Chernin, P. Teerikorpi, and M. Valtonen, De Gruyter Srud. Math. Phys. 28 (2015); arXiv:1411.5860.

    Google Scholar 

  24. G. Byrd, A. D. Chernin, P. Teerikorpi, and M. Valtonen, Paths to Dark Energy (De Gruyter, Berlin, 2012), Vol. 2.

    Book  MATH  Google Scholar 

  25. A. D. Chernin, JETP Lett. 98, 353 (2013).

    Article  ADS  Google Scholar 

  26. A. D. Chernin, N. V. Emelyanov, and I. D. Karachentsev, Mon. Not. R. Astron. Soc. 449, 2069 (2015).

    Article  ADS  Google Scholar 

  27. R. Nandra, A. N. Lasenby, and M. P. Hobson, Mon. Not. R. Astron. Soc. 422, 2931 (2012).

    Article  ADS  Google Scholar 

  28. V. Faraoni, Phys. Dark Univ. 11, 11 (2016).

    Article  Google Scholar 

  29. I. D. Karachentsev, R. B. Tully, Po-Feng Wu, E. J. Shaya, and A. E. Dolphin, Astrophys. J. 782, 4 (2014).

    Article  ADS  Google Scholar 

  30. V. Pavlidou and T. N. Tomaras, J. Cosmol. Astropart. Phys. 1409, 020 (2014).

    Article  ADS  Google Scholar 

  31. J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender, Astrophys. J. Suppl. 182, 216 (2009).

    Article  ADS  Google Scholar 

  32. B. Binggeli, Astron. Astrophys. 107, 338 (1982).

    ADS  Google Scholar 

  33. A. I. Zabludoff and M. J. Geller, Astron. J. 107, 1929 (1994).

    Article  ADS  Google Scholar 

  34. S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76, 104019 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Multamaki and I. Vilja, Phys. Rev. D 74, 064022 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Multamaki and I. Vilja, Phys. Rev. D 76, 064021 (2007).

    Article  ADS  Google Scholar 

  37. R. E. Bank et al., IEEE Trans. Electron Dev. 39, 1031 (1983).

    Article  ADS  Google Scholar 

  38. G. M. Eadie and W. E. Harris, Astrophys. J. 829, 108 (2016).

    Article  ADS  Google Scholar 

  39. A. Zitrin et al., Astrophys. J. 801, 44 (2015).

    Article  ADS  Google Scholar 

  40. K. Umetsu et al., Astrophys. J. 795, 163 (2014).

    Article  ADS  Google Scholar 

  41. A. B. Newman, T. Treu, R. S. Ellis, D. J. Sand, C. Nipoti, J. Richard, and E. Jullo, Astrophys. J. 765, 24 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Alexeyev.

Additional information

Original Russian Text © S.O. Alexeyev, B.N. Latosh, V.A. Echeistov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1271–1278.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeyev, S.O., Latosh, B.N. & Echeistov, V.A. Searching for Constraints on Starobinsky’s Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales. J. Exp. Theor. Phys. 125, 1083–1089 (2017). https://doi.org/10.1134/S1063776117120111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120111

Navigation