Skip to main content

Galaxy Clusters and Modified Gravity

  • Chapter
  • First Online:
Modified Gravity and Cosmology

Abstract

This section reviews the potential of galaxy clusters to probe the nature of the gravitational law and dark energy at large scales. Focusing on the predictions of the most popular theories beyond General Relativity, we discuss the key phenomenological implications, their confrontation with observations, along with the relevant current constraints. Finally, we briefly comment on the expectations from future galaxy cluster surveys in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.stsci.edu/~postman/CLASH/.

  2. 2.

    https://kyle.na.astro.it/CLASH-VLT/Public/index.html.

  3. 3.

    \(B \equiv \frac{f_{RR}}{1+f_R} R' \frac{H}{H'}\), with \(' \equiv d/dlna\) where a(t) is the scale factor and R the Ricci scalar.

References

  1. F. Schmidt, M.V. Lima, H. Oyaizu, W. Hu, Non-linear evolution of f(R) cosmologies III: halo statistics. Phys. Rev. D 79, 083518 (2009). arXiv:0812.0545

  2. L. Lombriser, K. Koyama, G.-B. Zhao, B. Li, Chameleon f(R) gravity in the virialized cluster. Phys. Rev. D 85, 124054 (2012). arXiv:1203.5125

  3. Y. Li, W. Hu, Chameleon Halo Modeling in f(R) Gravity. Phys. Rev. D 84, 084033 (2011). arXiv:1107.5120

  4. L. Lombriser, B. Li, K. Koyama, G.-B. Zhao, Modeling halo mass functions in chameleon f(R) gravity. Phys. Rev. D87(12), 123511 (2013). arXiv:1304.6395

  5. L. Lombriser, K. Koyama, B. Li, Halo modelling in chameleon theories. JCAP 1403, 021 (2014). arXiv:1312.1292

  6. L. Pizzuti et al., CLASH-VLT: testing the nature of gravity with galaxy cluster mass profiles. JCAP 1604(04), 023 (2016). arXiv:1602.03385

  7. G.A. Mamon, A. Biviano, G. Boué, MAMPOSSt: modelling anisotropy and mass profiles of observed spherical systems - I. Gaussian 3D velocities. Mon. Not. Roy. Astron. Soc. 429, 3079–3098 (2013). arXiv:1212.1455

  8. L. Pizzuti, I.D. Saltas, S. Casas, L. Amendola, A. Biviano, Future constraints on the gravitational slip with the mass profiles of galaxy clusters. Mon. Not. Roy. Astron. Soc. 486(1), 596–607 (2019). arXiv:1901.01961

  9. L. Pizzuti et al., CLASH-VLT: constraints on \(f(R)\) gravity models with galaxy clusters using lensing and kinematic analyses. JCAP 1707(07), 023 (2017). arXiv:1705.05179

  10. F. Schmidt, A. Vikhlinin, W. Hu, Cluster constraints on \(f(r)\) gravity. Phys. Rev. D 80, 083505 (2009)

    Google Scholar 

  11. D. Rapetti, S.W. Allen, A. Mantz, H. Ebeling, The observed growth of massive galaxy clusters – III. Testing general relativity on cosmological scales. Monthly Notices R. Astron. Soc. 406, 1796–1804 (2010)

    Google Scholar 

  12. L. Lombriser, A. Slosar, U. Seljak, W. Hu, Constraints on f(R) gravity from probing the large-scale structure. Phys. Rev. D 85, 124038 (2012). arXiv:1003.3009

  13. D. Rapetti, S.W. Allen, A. Mantz, H. Ebeling, Testing general relativity on cosmic scales with the observed abundance of massive clusters. Prog. Theor. Phys. Suppl. 190, 179–187 (2011)

    Article  ADS  Google Scholar 

  14. M. Cataneo, D. Rapetti, F. Schmidt, A. Mantz, S. Allen, D. Applegate, P. Kelly, A. Von Der Linden, R. Morris, New constraints on f (r) gravity from clusters of galaxies. Phys. Rev. D - Part. Fields Grav. Cosmol. 92 (2015)

    Google Scholar 

  15. S. Ferraro, F. Schmidt, W. Hu, Cluster abundance in \(f(r)\) gravity models. Phys. Rev. D 83, 063503 (2011)

    Google Scholar 

  16. M. Cataneo, D. Rapetti, L. Lombriser, B. Li, Cluster abundance in chameleon \(f(R)\) gravity I: toward an accurate halo mass function prediction. JCAP 1612(12), 024 (2016). arXiv:1607.08788

  17. A. Terukina, K. Yamamoto, Gas density profile in dark matter halo in chameleon cosmology. Phys. Rev. D 86, 103503 (2012)

    Google Scholar 

  18. A. Terukina, L. Lombriser, K. Yamamoto, D. Bacon, K. Koyama, R.C. Nichol, Testing chameleon gravity with the Coma cluster. JCAP 1404, 013 (2014). arXiv:1312.5083

  19. H. Wilcox et al., The XMM cluster survey: testing chameleon gravity using the profiles of clusters. Mon. Not. Roy. Astron. Soc. 452(2), 1171–1183 (2015). arXiv:1504.03937

  20. H. Wilcox, R.C. Nichol, G.-B. Zhao, D. Bacon, K. Koyama, A.K. Romer, Simulation tests of galaxy cluster constraints on chameleon gravity. Mon. Not. Roy. Astron. Soc. 462(1), 715–725 (2016). arXiv:1603.05911

  21. J. Sakstein, H. Wilcox, D. Bacon, K. Koyama, R.C. Nichol, Testing gravity using galaxy clusters: new constraints on beyond Horndeski theories. JCAP 1607(07), 019 (2016). arXiv:1603.06368

  22. V. Salzano, D.F. Mota, M.P. Dabrowski, S. Capozziello, No need for dark matter in galaxy clusters within Galileon theory. JCAP 1610(10), 033 (2016). arXiv:1607.02606

  23. V. Salzano, D.F. Mota, S. Capozziello, M. Donahue, Breaking the Vainshtein screening in clusters of galaxies. Phys. Rev. D95(4), 044038 (2017). arXiv:1701.03517

  24. A. Biviano, P. Rosati, I. Balestra, A. Mercurio, M. Girardi, M. Nonino, C. Grillo, M. Scodeggio, D. Lemze, D. Kelson, and others, CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847. Astron. Astrophys. 558, A1 (2013). arXiv:1307.5867

  25. J. Binney, G.A. Mamon, M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole. Mon. Not. Roy. Astron. Soc. 200, 361–375 (1982)

    Google Scholar 

  26. O. Host, S.H. Hansen, R. Piffaretti, A. Morandi, S. Ettori, S.T. Kay, R. Valdarnini, Measurement of the dark matter velocity anisotropy in galaxy clusters. Astrophys. J. 690, 358–366 (2009). arXiv:0808.2049

  27. O. Host, Measurement of the dark matter velocity anisotropy profile in galaxy clusters. Nucl. Phys. B Proc. Suppl. 194, 111–115 (2009). arXiv:0810.3676

  28. S.H. Hansen, B. Moore, A universal density slope Velocity anisotropy relation for relaxed structures. New Astron. 11, 333–338 (2006). arXiv:astro-ph/0411473

  29. G.A. Mamon, A. Biviano, G. Murante, The universal distribution of halo interlopers in projected phase space. Bias in galaxy cluster concentration and velocity anisotropy? Astron. Astrophys. 520, A30 (2010) arXiv:1003.0033

  30. L. Pizzuti, B. Sartoris, S. Borgani, L. Amendola, K. Umetsu, A. Biviano, M. Girardi, P. Rosati, I. Balestra, G.B. Caminha, B. Frye, A. Koekemoer, C. Grillo, M. Lombardi, A. Mercurio, M. Nonino, CLASH-VLT: testing the nature of gravity with galaxy cluster mass profiles. J. Cosmol. Astropart. Phys. 2016, 023 (2016). arXiv:1602.03385

  31. O. Tiret, F. Combes, G.W. Angus, B. Famaey, H.S. Zhao, Velocity dispersion around ellipticals in MOND. A&A 476, L1–L4 (2007). arXiv:0710.4070

  32. L. Pizzuti, B. Sartoris, S. Borgani, A. Biviano, Calibration of systematics in constraining modified gravity models with galaxy cluster mass profiles (2019). arXiv:1912.09096

  33. A. Diaferio, M.J. Geller, Infall regions of galaxy clusters. Astrophys. J. 481, 633–643 (1997) arXiv:astro-ph/9701034

  34. S. Ettori, A. Donnarumma, E. Pointecouteau, T.H. Reiprich, S. Giodini, L. Lovisari, R.W. Schmidt, Mass profiles of galaxy clusters from X-ray analysis. Space Sci. Rev. 177, 119–154 (2013). arXiv:1303.3530

  35. V. Biffi, S. Borgani, G. Murante, E. Rasia, S. Planelles, G.L. Granato, C. Ragone-Figueroa, A.M. Beck, M. Gaspari, K. Dolag, On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016). arXiv:1606.02293

  36. D. Martizzi, H. Agrusa, Mass modeling of galaxy clusters: quantifying hydrostatic bias and contribution from non-thermal pressure (2016) arXiv:1608.04388

  37. D. Nagai, E.T. Lau, Gas clumping in the outskirts of \(\Lambda \) CDM clusters. Astrophys. J. 731, L10 (2011). arXiv:1103.0280

  38. M. Martinelli, E. Calabrese, F. De Bernardis, A. Melchiorri, L. Pagano, R. Scaramella, Constraining modified gravity with Euclid. Phys. Rev. D 83, 023012 (2011). arXiv:1010.5755

Download references

Acknowledgements

Ippocratis D. Saltas is supported by the Czech Science Foundation GAČR (Project: 21-16583M).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saltas, I.D., Pizzuti, L. (2021). Galaxy Clusters and Modified Gravity. In: Saridakis, E.N., et al. Modified Gravity and Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-030-83715-0_36

Download citation

Publish with us

Policies and ethics