Skip to main content
Log in

Multicanonical sampling of the space of states of ℋ(2, n)-vector models

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Problems of temperature behavior of specific heat are solved by the entropy simulation method for Ising models on a simple square lattice and a square spin ice (SSI) lattice with nearest neighbor interaction, models of hexagonal lattices with short-range (SR) dipole interaction, as well as with long-range (LR) dipole interaction and free boundary conditions, and models of spin quasilattices with finite interaction radius. It is established that systems of a finite number of Ising spins with LR dipole interaction can have unusual thermodynamic properties characterized by several specific-heat peaks in the absence of an external magnetic field. For a parallel multicanonical sampling method, optimal schemes are found empirically for partitioning the space of states into energy bands for Ising and SSI models, methods of concatenation and renormalization of histograms are discussed, and a flatness criterion of histograms is proposed. It is established that there is no phase transition in a model with nearest neighbor interaction on a hexagonal lattice, while the temperature behavior of specific heat exhibits singularity in the same model, in case of LR interaction. A spin quasilattice is found that exhibits a nonzero value of residual entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Middleton and D. J. Wales, J. Chem. Phys. 118, 4583 (2003).

    Article  ADS  Google Scholar 

  2. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  3. D. P. Landau, S. H. Tsai, and M. Exler, Am. J. Phys. 72, 1294 (2004).

    Article  ADS  Google Scholar 

  4. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

    Article  ADS  Google Scholar 

  5. B. J. Schulz, B. Kurt, and M. Müller, Int. J. Mod. Phys. C 13, 477 (2002).

    Article  ADS  Google Scholar 

  6. A. Proykova and D. Stauffer, Open Phys. 3, 209 (2005).

    Article  ADS  Google Scholar 

  7. M. Troyer, S. Wessel, and F. Alet, Phys. Rev. Lett. 90, 120201 (2003).

    Article  ADS  Google Scholar 

  8. A. Malakis, A. Peratzakis, and N. G. Fytas, Phys. Rev. E 70, 066128 (2004).

    Article  ADS  Google Scholar 

  9. G. Brown and T. C. Schulthess, J. Appl. Phys. 97, 10E303 (2005).

    Article  Google Scholar 

  10. B. J. Schulz, K. Binder, and M. Müller, Phys. Rev. E 71, 046705 (2005).

    Article  ADS  Google Scholar 

  11. S. Reynal and H. T. Diep, Phys. Rev. E 72, 056710 (2005).

    Article  ADS  Google Scholar 

  12. F. Calvo, Phys. Rev. E 82, 046703 (2010).

    Article  ADS  Google Scholar 

  13. Y. L. Xie, P. Chu, Y. L. Wang, et al., Phys. Rev. E 89, 013311 (2014).

    Article  ADS  Google Scholar 

  14. F. Calvo and P. Parneix, J. Chem. Phys. 119, 256 (2003).

    Article  ADS  Google Scholar 

  15. J. Snider and C. Y. Clare, Phys. Rev. B 72, 214203 (2005).

    Article  ADS  Google Scholar 

  16. T. Vogel, Y. W. Li, T. Wüst, et al., Phys. Rev. Lett. 110, 210603 (2013).

    Article  ADS  Google Scholar 

  17. D. Jayasri, V. S. S. Sastry, and K. P. N. Murthy, Phys. Rev. E 72, 036702 (2005).

    Article  ADS  Google Scholar 

  18. C. Desgranges and J. Delhommelle, J. Chem. Phys. 130, 244109 (2009).

    Article  ADS  Google Scholar 

  19. V. T. Ngo, D. T. Hoang, and H. T. Diep, Phys. Rev. E 82, 041123 (2010).

    Article  ADS  Google Scholar 

  20. W. Kwak, J. Jeong, J. Lee, et al., Phys. Rev. E 92, 022134 (2015).

    Article  ADS  Google Scholar 

  21. A. A. Caparica, S. A. Leão, and C. J. DaSilva, Phys. A: Stat. Mech. Appl. 438, 447 (2015).

    Article  Google Scholar 

  22. J. Liu, B. Song, Y. Yao, et al., Phys. Rev. E 90, 042715 (2014).

    Article  ADS  Google Scholar 

  23. N. Rathore and J. J. de Pablo, J. Chem. Phys. 116, 7225 (2002).

    Article  ADS  Google Scholar 

  24. S. H. Tsai, F. Wang, and D. P. Landau, Brazil. J. Phys. 36, 635 (2006).

    Article  ADS  Google Scholar 

  25. M. A. de Menezes and A. R. Lima, Phys. A: Stat. Mech. Appl. 323, 428 (2003).

    Article  Google Scholar 

  26. V. Mustonen and R. Rajesh, J. Phys. A: Math. Gen. 36, 6651 (2003).

    Article  ADS  Google Scholar 

  27. C. Zhou and R. N. Bhatt, Phys. Rev. E 72, 025701 (2005).

    Article  ADS  Google Scholar 

  28. R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007).

    Article  ADS  Google Scholar 

  29. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  30. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  31. D. J. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).

    Article  Google Scholar 

  32. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  33. S. Xu, X. Zhou, Y. Jiang, et al., Sci. China Phys., Mech. Astron. 58, 1 (2015).

    Google Scholar 

  34. R. E. Belardinelli, S. Manzi, and V. D. Pereyra, Phys. Rev. E 78, 067701 (2008).

    Article  ADS  Google Scholar 

  35. K. A. Maerzke, L. Gai, P. T. Cummings, et al., J. Chem. Phys. 137, 204105 (2012).

    Article  ADS  Google Scholar 

  36. L. Bornn, P. E. Jacob, and P. del Moral, J. Comput. Graph. Stat. 22, 749 (2013).

    Article  Google Scholar 

  37. B. Bauer, E. Gull, S. Trebst, et al., J. Stat. Mech.: Theory Exp. 2010, P01020 (2010).

    Article  Google Scholar 

  38. P. Dayal, S. Trebst, S. Wessel, et al., Phys. Rev. Lett. 92, 097201 (2004).

    Article  ADS  Google Scholar 

  39. R. E. Belardinelli and V. D. Pereyra, J. Chem. Phys. 127, 184105 (2007).

    Article  ADS  Google Scholar 

  40. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  41. G. Brown, Kh. Odbadrakh, D. M. Nicholson, et al., Phys. Rev. E 84, 065702 (2011).

    Article  ADS  Google Scholar 

  42. M. S. Kalyan, R. Bharath, V. S. S. Sastry, et al., J. Stat. Phys. 163, 197 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. I. A. Silant’eva and P. N. Vorontsov-Vel’yaminov, Vychisl. Metody Programm. 12, 397 (2011).

    Google Scholar 

  44. L. N. Shchur, Mekh., Upravl. Inform. 6 (6), 160 (2014).

    Google Scholar 

  45. T. Vogel, Y. W. Li, T. Wüst, et al., Phys. Rev. E 90, 023302 (2014).

    Article  ADS  Google Scholar 

  46. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).

    Google Scholar 

  47. M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

    Article  ADS  Google Scholar 

  48. K. G. Wilson, Sci. Am. 241, 140 (1979).

    Article  Google Scholar 

  49. K. S. Soldatov, K. V. Nefedov, and Y. Okabe, Phys. Lett. A 381, 707 (2017).

    Article  ADS  Google Scholar 

  50. J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).

    Article  ADS  Google Scholar 

  51. J. M. Kosterlitz and D. J. Thouless, in Progress in Low Temperature Physics, Ed. by D. F. Brewer (North-Holland, Amsterdam, 1978), Vol. VII B, p. 371.

  52. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  53. A. E. Ferdinand and M. E. Fisher, Phys. Rev. B 185, 832 (1969).

    Article  ADS  Google Scholar 

  54. R. F. Wang, C. Nisoli, R. S. Freitas, et al., Nature 439, 303 (2006).

    Article  ADS  Google Scholar 

  55. Y. Qi, T. Brintlinger, and J. Cumings, Phys. Rev. B 77, 094418 (2008).

    Article  ADS  Google Scholar 

  56. M. Lederman, G. A. Gibson, and S. Schultz, J. Appl. Phys. 73, 6961 (1993).

    Article  ADS  Google Scholar 

  57. G. Möller and R. Moessner, Phys. Rev. B 80, 140409 (2009).

    Article  Google Scholar 

  58. K. V. Nefedev, Y. P. Ivanov, and A. A. Peretyatko, in Methods and Tools of Parallel Programming Multicomputers, Proceedings of the 2nd Russia–Taiwan Symposium MTPP 2010, Vladivostok, Russia, 2010, Lect. Notes Comput. Sci. 6083, 260 (2010).

    Google Scholar 

  59. Y. P. Ivanov, K. V. Nefedev, A. I. Iljin, et al., J. Phys.: Conf. Ser. 266, 012117 (2011).

    Google Scholar 

  60. K. V. Nefedev, Y. P. Ivanov, A. A. Peretyatko, et al., Solid State Phenom. 168, 325 (2011).

    Google Scholar 

  61. C. Nisoli, R. Moessner, and P. Schiffe, Rev. Mod. Phys. 85, 1473 (2013).

    Article  ADS  Google Scholar 

  62. Y. Shevchenko, A. Makarov, and K. Nefedev, Phys. Lett. A 381, 428 (2017).

    Article  ADS  Google Scholar 

  63. R. C. Silva, F. S. Nascimento, L. A. S. Mól, et al., New J. Phys. 14, 015008 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shevchenko.

Additional information

Original Russian Text © Yu.A. Shevchenko, A.G. Makarov, P.D. Andriushchenko, K.V. Nefedev, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 6, pp. 1146–1159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, Y.A., Makarov, A.G., Andriushchenko, P.D. et al. Multicanonical sampling of the space of states of ℋ(2, n)-vector models. J. Exp. Theor. Phys. 124, 982–993 (2017). https://doi.org/10.1134/S1063776117060152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060152

Navigation