Skip to main content
Log in

Pulse regime in formation of fractal fibers

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10–3–10–4 for transient metals under consideration. A typical energy flux (~106 W/cm2), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Forrest and T. A. Witten, J. Phys. A 12, L109 (1979).

    Article  ADS  Google Scholar 

  2. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  3. A. A. Lushnikov, A. E. Negin, and A. V. Pakhomov, Chem. Phys. Lett. 175, 138 (1990).

    Article  ADS  Google Scholar 

  4. A. A. Lushnikov, A. V. Pakhomov, and G. A. Chernyaeva, Sov. Phys. Dokl. 32, 45 (1987).

    ADS  Google Scholar 

  5. P. Meakin. Phys. Rev. Lett. 51, 1119 (1983).

    Article  ADS  Google Scholar 

  6. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Article  ADS  Google Scholar 

  7. R. Jullien, M. Kolb, and R. Botet, J. Phys. (Paris) 45, L211 (1984).

    Article  Google Scholar 

  8. R. Jullien and M. Kolb, Phys. Rev. Lett. 53, 1653 (1984).

    Article  Google Scholar 

  9. P. Meakin, Phys. Rev. A 29, 997 (1984).

    Article  ADS  Google Scholar 

  10. R. Botet, R. Jullien, and M. Kolb, Phys. Rev. B 30, 2150 (1984).

    Article  ADS  Google Scholar 

  11. P. Meakin, J. Colloid Interface Sci. 102, 491 (1985).

    Article  Google Scholar 

  12. R. Jullien and R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

    MATH  Google Scholar 

  13. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).

    Book  MATH  Google Scholar 

  14. B. M. Smirnov, Phys. Rep. 188, 1 (1990).

    Article  ADS  Google Scholar 

  15. A. A. Lushnikov et al., Sov. Phys. Usp. 34, 160 (1991).

    Article  ADS  Google Scholar 

  16. B. M. Smirnov, Phys. Usp. 34, 711 (1991).

    Article  ADS  Google Scholar 

  17. Y. Kantor and T. A. Witten, J. Phys. 45, L674 (1984).

    Google Scholar 

  18. B. M. Smirnov, Physics of Fractal Clusters (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  19. B. M. Smirnov, J. Exp. Theor. Phys. 121, 587 (2015).

    Article  ADS  Google Scholar 

  20. G. C. Bond, Catalysis by Metals (Academic, London, 1962).

    Google Scholar 

  21. M. Haruta, Chem. Rec. 3, 75 (2003).

    Article  Google Scholar 

  22. G. C. Bond, C. Louis, and D. T. Thompson, Catalysis by Gold (World Scientific, Singapore, 2006).

    Book  Google Scholar 

  23. K. W. Kolasinski, Surface Science: Foundation of Catalysis and Nanoscience (Wiley, Berlin, 2012).

    Book  Google Scholar 

  24. R. Coquet, K. L. Howard, and D. J. Willock, Chem. Soc. Rev. 37, 2046 (2008).

    Article  Google Scholar 

  25. B. B. Mandelbrot, The Fractal Geometry of Nature (San Francisco, Freeman, 1982).

    MATH  Google Scholar 

  26. J. Feder, Fractals (Plenum, New York, 1988).

    Book  MATH  Google Scholar 

  27. E. P. Wigner and F. Seits, Phys. Rev. 46, 509 (1934).

    Article  ADS  Google Scholar 

  28. E. P. Wigner, Phys. Rev. 46, 1002 (1934).

    Article  ADS  Google Scholar 

  29. W. Wien, Wied. Ann. 58, 662 (1896).

    Article  Google Scholar 

  30. Handbook of Chemistry and Physics, 86th ed., Ed. by D. R. Lide (CRC, London, 2003–2004).

  31. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Oxford, Butterworth, 2000).

    MATH  Google Scholar 

  32. E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics (Oxford, Pergamon Press, 1981).

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).

    MATH  Google Scholar 

  34. B. M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999).

    Google Scholar 

  35. B. M. Smirnov, Clusters Processes in Gases and Plasmas (Wiley, Wenheim, 2010).

    Book  Google Scholar 

  36. B. M. Smirnov, Nanoclusters and Microparticles in Gases and Vapors (De Gruyter, Berlin, 2012).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 5, pp. 886–895.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, B.M. Pulse regime in formation of fractal fibers. J. Exp. Theor. Phys. 123, 769–777 (2016). https://doi.org/10.1134/S1063776116110212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116110212

Navigation