Skip to main content
Log in

Coherent scattering of an atom in the field of a standing wave under conditions of initial quantum correlation of subsystems

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity and to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. C. J. Hood, T. W. Lynn, A. C. Doherty, et al., Science 287, 1447 (2000); Cavity Quantum Electrodynamics, Ed. by P. R. Bermann (Academic, New York,1994).

    Article  ADS  Google Scholar 

  3. J. H. Bell, Physics 1, 195 (1964).

    Google Scholar 

  4. M. A. Nielsen and I. L. Chuang, Quantum Computationand Quantum Information (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  5. D. Bouwmeester, A. Ekert, A. Zeilinger, et al., The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  6. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  7. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  8. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature 468, 545 (2010).

    Article  ADS  Google Scholar 

  9. A. M. Basharov, JETP Lett. 103, 15 (2016).

    Article  ADS  Google Scholar 

  10. A. I. Trubilko, JETP Lett. 98, 249 (2013).

    Article  ADS  Google Scholar 

  11. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Nauka, Moscow, 1986; Routledge, London, 1987).

    Google Scholar 

  12. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990; Nauka, Moscow, 1991).

    Google Scholar 

  13. V. I. Balykin and V. S. Letokhov, Atom Optics with Laser Light (Harwood Academic, Switzerland, 1995).

    Google Scholar 

  14. O. N. Prudnikov, R. Ya. Il’enkov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, J. Exp. Theor. Phys. 112, 939 (2011)

    Article  ADS  Google Scholar 

  15. O. N. Prudnikov, A. V. Taichenachev, and V. I. Yudin, JETP Lett. 102, 576 (2015).

    Article  ADS  Google Scholar 

  16. Yu. I. Bogdanov, A. K. Gavrichenko, K. S. Kravtsov, S. P. Kulik, E. V. Moreva, and A. A. Solov’ev, J. Exp. Theor. Phys. 113, 192 (2011)

    Article  ADS  Google Scholar 

  17. Yu. I. Bogdanov, S. P. Kulik, E. V. Moreva, I. V. Tikhonov, and A. K. Gavrichenko, JETP Lett. 91, 686 (2010).

    Article  ADS  Google Scholar 

  18. A. M. Basharov, Photonics. Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990) [in Russian].

    Google Scholar 

  19. A. M. Basharov, J. Exp. Theor. Phys. 89, 1063 (1999).

    Article  ADS  Google Scholar 

  20. P. E. Moskowitz, P. L. Gould, S. R. Atlas, and D. E. Pritchard, Phys. Rev. Lett. 51, 370 (1983).

    Article  ADS  Google Scholar 

  21. M. K. Oberthaler, B. Abfalterer, S. Barnet, J. Smiedmayer, and A. Zeilinger, Phys. Rev. Lett. 77, 4980 (1996)

    Article  ADS  Google Scholar 

  22. M. K. Oberthaler, B. Abfalterer, S. Barnet, J. Smiedmayer, and A. Zeilinger, Phys. Rev. A 60, 456 (1999).

    Article  ADS  Google Scholar 

  23. P. J. Martin, B. J. Oldager, A. H. Miklich, and D. E. Pritchard, Phys. Rev. Lett. 60, 515 (1988).

    Article  ADS  Google Scholar 

  24. C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).

    Article  ADS  Google Scholar 

  25. I. Sh. Averbukh, V. M. Akulin, and W. P. Scheich, Phys. Rev. Lett. 72, 437 (1994).

    Article  ADS  Google Scholar 

  26. P. Domokos, P. Adam, J. Janszky, and A. Zeilinger, Phys. Rev. Lett. 77, 1663 (1996).

    Article  ADS  Google Scholar 

  27. V. P. Karasev, Theor. Math. Phys. 95, 367 (1993).

    Article  MathSciNet  Google Scholar 

  28. A. M. Basharov, J. Exp. Theor. Phys. 110, 951 (2010).

    Article  ADS  Google Scholar 

  29. A. I. Trubilko, JETP Lett. 95, 44 (2012)

    Article  ADS  Google Scholar 

  30. A. I. Trubilko, J. Exp. Theor. Phys. 114, 575 (2012).

    Article  ADS  Google Scholar 

  31. W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).

    Article  ADS  Google Scholar 

  32. V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).

    Article  ADS  Google Scholar 

  33. H. B. Casimir, Proc. Kon. Nederl. Akad. 51, 793 (1948)

    Google Scholar 

  34. H. B. Casimir, Physica 19, 846 (1953).

    Article  ADS  Google Scholar 

  35. V. N. Gorbachev and A. I. Trubilko, JETP Lett. 89, 479 (2009)

    Article  ADS  Google Scholar 

  36. V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 108, 203 (2009).

    Article  ADS  Google Scholar 

  37. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    Book  MATH  Google Scholar 

  38. V. N. Gorbachev and A. I. Trubilko, JETP Lett. 92, 624 (2010)

    Article  ADS  Google Scholar 

  39. V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 111, 544 (2010).

    Article  ADS  Google Scholar 

  40. V. P. Shlyaikh, Quantum Optics in Phase Space (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  41. A. M. Basharov, V. N. Gorbachev, and A. A. Rodichkina, Phys. Rev. A 74, 042313 (2006)

    Article  ADS  Google Scholar 

  42. A. M. Basharov and V. N. Gorbachev, Opt. Spectrosc. 102, 585 (2007).

    Article  ADS  Google Scholar 

  43. S. M. Tan and D. F. Walls, Phys. Rev. A 18, 2533 (1978)

    Article  Google Scholar 

  44. S. Dur and G. Rembe, Phys. Rev. A 59, 1495 (1999); Special Issue on Atom Optics, Appl. Phys. B 54, 321 (1992).

    Article  ADS  Google Scholar 

  45. S. V. Borisenok and Yu. V. Rozhdestvenskii, Izv. RGPU im. Gertsena, Ser. Fiz. 7, 32 (2007).

    Google Scholar 

  46. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, New York, 2007).

    Book  MATH  Google Scholar 

  47. G. Valter, Phys. Usp. 39, 727 (1996).

    Article  ADS  Google Scholar 

  48. D. B. Tret’yakov, I. I. Beterov, V. M. Entin, I. I. Ryabtsev, and P. L. Chapovskii, J. Exp. Theor. Phys. 108, 374 (2009)

    Article  ADS  Google Scholar 

  49. V. M. Entin, E. A. Yakshina, D. B. Tret’yakov, I. I. Beterov, and I. I. Ryabtsev, J. Exp. Theor. Phys. 116, 721 (2013).

    Article  ADS  Google Scholar 

  50. S. N. Bagaev, V. I. Baraulya, A. E. Bonert, A. N. Goncharov, M. R. Seidaliev, and S. A. Farnosov, Quantum Electron. 31, 495 (2001).

    Article  ADS  Google Scholar 

  51. A. M. Shilov, A. N. Goncharov, and A. E. Bonert, Vestn. Novg. Univ., Ser. Fiz. 4, 3 (2009).

    Google Scholar 

  52. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006)

    Article  ADS  Google Scholar 

  53. D. A. Kalashnikov, V. P. Karasev, K. G. Katamadze, S. P. Kulik, and A. A. Solov’ev, J. Exp. Theor. Phys. 108, 33 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Trubilko.

Additional information

Original Russian Text © A.I. Trubilko, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 123, No. 4, pp. 649–665.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubilko, A.I. Coherent scattering of an atom in the field of a standing wave under conditions of initial quantum correlation of subsystems. J. Exp. Theor. Phys. 123, 557–571 (2016). https://doi.org/10.1134/S1063776116100095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116100095

Navigation