Skip to main content
Log in

Atoms in the counter-propagating frequency-modulated waves: splitting, cooling, confinement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We show that the counter-propagating frequency-modulated (FM) waves of the same intensity can split an orthogonal atomic beam into two beams. We calculate the temperature of the atomic ensemble for the case when the atoms are grouped around zero velocity in the direction of the waves propagation. The high-intensity laser radiation with a properly chosen carrier frequency can form a one-dimensional trap for atoms. We carry out the numerical simulation of the atomic motion (two-level model of the atom-field interaction) using parameters appropriate for sodium atoms and show that sub-Doppler cooling can be reached. We suppose that such a cooling is partly based on the cooling without spontaneous emission in polychromatic waves [H. Metcalf, Phys. Rev. A 77, 061401 (2008)]. We calculate the state of the atom in the field by the Monte Carlo wave-function method and describe its mechanical motion by the classical mechanics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, Phys. Rev. Lett. 25, 1321 (1970)

    Article  ADS  Google Scholar 

  2. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  3. C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  4. W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  5. V.I. Balykin, V.G. Minogin, V.S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000)

    Article  ADS  Google Scholar 

  6. V.G. Minogin, V.S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, New York, 1987)

  7. H.J. Metcalf, P. van der Stratten, Laser Cooling and Trapping (Springer-Verlag, New York, Berlin, Heidelberg, 1999)

  8. T.G.M. Freegarde, J. Waltz, W. Hänsch, Opt. Commun. 117, 262 (1995)

    Article  ADS  Google Scholar 

  9. A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Schütze, R. Wynands, D. Meschede, Phys. Rev. A 56, R3354 (1997)

    Article  ADS  Google Scholar 

  10. V.I. Romanenko, L.P. Yatsenko, J. Phys. B 44, 115305 (2011)

    Article  ADS  Google Scholar 

  11. V.I. Balykin, J. Exp. Theor. Phys. Lett. 81, 209 (2005)

    Article  Google Scholar 

  12. D.N. Yanyshev, V.I. Balykin, Y.V. Vladimirova, V.N. Zadkov, Phys. Rev. A 87, 033411 (2013)

    Article  ADS  Google Scholar 

  13. V.I. Romanenko, A.V. Romanenko, Ye.G. Udovitskaya, L.P. Yatsenko, Ukr. J. Phys. 58, 438 (2013)

    Article  Google Scholar 

  14. V.I. Romanenko, A.V. Romanenko, Ye.G. Udovitskaya, L.P. Yatsenko, J. Mod. Opt. 61, 839 (2014)

    Article  ADS  Google Scholar 

  15. V.I. Romanenko, Ye.G. Udovitskaya, A.V. Romanenko, L.P. Yatsenko, Phys. Rev. A 90, 053421 (2014)

    Article  ADS  Google Scholar 

  16. V.S. Voĭtsekhovich, M.V. Danileĭko, A.N. Negriĭko, V.I. Romanenko, L. Yatsenko, JETP Lett. 49, 161 (1989)

    ADS  Google Scholar 

  17. V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko, Ukr. J. Phys. 61, 309 (2016)

    Article  Google Scholar 

  18. J. Hoffnagle, Opt. Lett. 13, 102 (1988)

    Article  ADS  Google Scholar 

  19. M. Zhu, C.W. Oates, J.L. Hall, Phys. Rev. Lett. 67, 46 (1991)

    Article  ADS  Google Scholar 

  20. A.S. Parkins, P. Zoller, Phys. Rev. A 45, 6522 (1992)

    Article  ADS  Google Scholar 

  21. S.E. Park, H.S. Lee, E. Shin, T.Y. Kwon, S.H. Yang, H. Cho, J. Opt. Soc. Am. B 19, 2595 (2002)

    Article  ADS  Google Scholar 

  22. V.S. Voĭtsekhovich, M.V. Danileĭko, A.M. Negrĭko, V.I. Romanenko, L.P. Yatsenko, Ukr. Fiz. Zhurn. 36, 192 (1991)

    Google Scholar 

  23. V.S. Voĭtsekhovich, M.V. Danileĭko, A.M. Negrĭko, V.I. Romanenko, L.P. Yatsenko, Sov. J. Quant. Electron. 21, 996 (1991)

    Article  ADS  Google Scholar 

  24. M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, H. Metcalf, Phys. Rev. A 64, 063411 (2001)

    Article  ADS  Google Scholar 

  25. V.I. Romanenko, L.P. Yatsenko, J. Exp. Theor. Phys. Lett. 86, 756 (2007)

    Article  Google Scholar 

  26. A.M. Negriyko, V.I. Romanenko, L.P. Yatsenko, Dynamics of Atoms and Molecules in Coherent Laser Fields (in Ukrainian) (Naukova Dumka, Kyiv, 2008)

  27. R.D. Glover, T. Bastin, J. Opt. Soc. Am. B 32, B1 (2015)

    Article  Google Scholar 

  28. H. Metcalf, Phys. Rev. A 77, 061401 (2008)

    Article  ADS  Google Scholar 

  29. C. Corder, B. Arnold, H. Metcalf, Phys. Rev. Lett. 114, 043002 (2015)

    Article  ADS  Google Scholar 

  30. C. Corder, B. Arnold, X. Hua, H. Metcalf, J. Opt. Soc. Am. B 32, B75 (2015)

    Article  Google Scholar 

  31. C. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)

    Article  ADS  Google Scholar 

  32. J. Dalibard, Y. Castin, in Frontiers in Laser Spectroscopy: Varenna on Lake Como, Villa Monastero, 23 June-3 July 1992, edited by T.W. Hänsch, M. Inguscio (North Holland, 1994), Vol. 120, pp. 445–476

  33. C.S. Adams, E. Riis, Prog. Quant. Electron. 21, 1 (1997)

    Article  ADS  Google Scholar 

  34. B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990), Vol. 1

  35. V.G. Minogin, O.T. Serimaa, Opt. Commun. 30, 373 (1979)

    Article  ADS  Google Scholar 

  36. K. Mølmer, Phys. Rev. Lett. 66, 2301 (1991)

    Article  ADS  Google Scholar 

  37. V. Romanenko, L. Yatsenko, Opt. Commun. 392, 239 (2017)

    Article  ADS  Google Scholar 

  38. I. Nebenzahl, A. Szöke, Appl. Phys. Lett. 25, 327 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor I. Romanenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanenko, V.I., Kornilovska, N.V. Atoms in the counter-propagating frequency-modulated waves: splitting, cooling, confinement. Eur. Phys. J. D 71, 229 (2017). https://doi.org/10.1140/epjd/e2017-80109-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80109-7

Keywords

Navigation