Skip to main content
Log in

Quantum deviation of an atom at coherent scattering

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Effects of quantum deviation of a two-level atom at coherent scattering on an inhomogeneous optical potential created by crossed electromagnetic fields are considered. The region of interaction is formed by a lowfrequency quantized standing wave from a micromaser and a coherent traveling optical wave generated by an optical fiber located inside a cavity. The atom interacts with both fields under the conditions of two-photon two-wave resonance. It is shown that two effects of quantum deviation of translational motion of the atom can be observed. Interaction with the standing wave is caused under these conditions by a harmonic potential the character of scattering of the atom on which depends significantly on the initial conditions of preparation of the atom and quantized mode. The other effect—deviation of the atom by the classical traveling wave—is also completely quantum mechanical under these conditions and is produced by the noncommutative contribution of the kinetic energy operator of the atom and the interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Nauka, Moscow, 1986, Gordon and Breach, New York, 1987)

    Google Scholar 

  2. V. I. Balykin and V. S. Letokhov, Atom Optics with Laser Light (Harwood Academic, Switzerland, 1995).

    Google Scholar 

  3. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms (Nauka, Moscow, 1991; World Scientific, Singapore, 1990).

    Book  Google Scholar 

  4. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).

    Article  ADS  Google Scholar 

  5. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).

    Article  ADS  Google Scholar 

  6. V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo, and G. M. Tino, Phys. Rev. Lett. 100, 043602 (2008)

    Article  ADS  Google Scholar 

  7. A. Hilico, C. Solaro, M.-K. Zhou, M. Lopez, and F. P. dos Santos, Phys. Rev. A 91, 053616 (2015).

    Article  ADS  Google Scholar 

  8. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).

    Article  ADS  Google Scholar 

  9. I. Sh. Averbukh, V. M. Akulin, and W. P. Scheich, Phys. Rev. Lett. 72, 437 (1994).

    Article  ADS  Google Scholar 

  10. P. Domokos, P. Adam, J. Janszky, and A. Zeilinger, Phys. Rev. Lett. 77, 1663 (1996).

    Article  ADS  Google Scholar 

  11. A. I. Trubilko, JETP Lett. 98, 249 (2013)

    Article  ADS  Google Scholar 

  12. A. I. Trubilko, J. Exp. Theor. Phys. 123, 557 (2016).

    Article  ADS  Google Scholar 

  13. T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek, Phys. Rev. Lett. 68, 1996 (1992).

    Article  ADS  Google Scholar 

  14. D. Jurgens, A. Greiner, R. Stutzle, A. Habenicht, E. te Sligte, and M. K. Oberthaler, Phys. Rev. Lett. 93, 237402 (2004)

    Article  ADS  Google Scholar 

  15. S. V. Prants, JETP Lett. 92, 726 (2010).

    Article  ADS  Google Scholar 

  16. F. Riehle, Frequency Standards. Basics and Applications (Wiley-VCH, Weinheim, 2005, Fizmatlit, Moscow, 2009)

    Google Scholar 

  17. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013)

    Article  ADS  Google Scholar 

  18. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature 506, 71 (2014).

    Article  ADS  Google Scholar 

  19. S. Giorgini, L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).

    Article  ADS  Google Scholar 

  20. V. N. Gorbachev and A. I. Trubilko, JETP Lett. 89, 479 (2009)

    Article  ADS  Google Scholar 

  21. V. N. Gorbachev and A. I. Trubilko, J. Exp. Theor. Phys. 108, 203 (2009).

    Article  ADS  Google Scholar 

  22. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 97, 023602 (2006)

    Article  ADS  Google Scholar 

  23. D. A. Kalashnikov, V. P. Karasev, K. G. Katamadze, S. P. Kulik, and A. A. Solov’ev, J. Exp. Theor. Phys. 108, 33 (2009).

    Article  ADS  Google Scholar 

  24. W. P. Schleich, Quantum Optics in Phase Space (Wiley, Berlin, Weinheim, 2001, Fizmatlit, Moscow, 2005).

    MATH  Google Scholar 

  25. A. M. Basharov, Photonics. The Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990)[in Russian]

    Google Scholar 

  26. A. M. Basharov, J. Exp. Theor. Phys. 110, 951 (2010).

    Article  ADS  Google Scholar 

  27. O. G. Smolyanov and V. Zh. Sakbaev, Dokl. Math. 86, 460 (2012).

    Article  MathSciNet  Google Scholar 

  28. S. G. Porsev, M. G. Kozlov, and Yu. G. Rakhlina, JETP Lett. 72, 595 (2000).

    Article  ADS  Google Scholar 

  29. H. Walther, Phys. Usp. 39, 727 (1996)

    Article  ADS  Google Scholar 

  30. D. B. Tretyakov, I. I. Beterov, V. M. Entin, I. I. Ryabtsev, and P. L. Chapovsky, J. Exp. Theor. Phys. 108, 374 (2009)

    Article  ADS  Google Scholar 

  31. V. M. Entin, E. A. Yashkina, D. B. Tretyakov, I. I. Beterov, and I. I. Ryabtsev, J. Exp. Theor. Phys. 116, 721 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Trubilko.

Additional information

Original Russian Text © A.I. Trubilko, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 9, pp. 581–587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubilko, A.I. Quantum deviation of an atom at coherent scattering. Jetp Lett. 105, 617–623 (2017). https://doi.org/10.1134/S0021364017090144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017090144

Navigation