Skip to main content
Log in

A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).

    Article  ADS  Google Scholar 

  2. G. V. Shivashankar, M. Feingold, O. Krichevsky, and A. Libchaber, Proc. Nat. Acad. Sci. USA 96, 7916 (1999).

    Article  ADS  Google Scholar 

  3. C. G. Baumann, V. A. Bloomfeld, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, Biophys. J. 78, 1965 (2000).

    Article  Google Scholar 

  4. D. G. Grier, Nature (London) 424, 810 (2003).

    Article  ADS  Google Scholar 

  5. T. R. Strick, J. F. Allemand, D. Bensimon, and V. Croquette, Ann. Rev. Biophys. Biomol. Struct. 29, 523 (2000).

    Article  Google Scholar 

  6. M. C. Williams and I. Rouzina, Curr. Opin. Struct. Biol. 12, 330 (2002).

    Article  Google Scholar 

  7. L. P. Eisenhart, Riemannian Geometry (Princeton Univ. Press, Princeton, 1964).

    MATH  Google Scholar 

  8. M. P. DoCarmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ, 1976).

    Google Scholar 

  9. M. M. Postnikov, Lectures on Geometry, Semester III: Smooth Manifolds (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  10. S. L. Zhang, X. J. Zuo, M. G. Xia, S. M. Zhao, and E. H. Zhang, Phys. Rev. E 70, 051902 (2004).

    Article  ADS  Google Scholar 

  11. N. Thamwattana, J. A. McCoy, and J. M. Hill, Q. J. Mech. Appl. Math. 61, 431 (2008).

    Article  MathSciNet  Google Scholar 

  12. A. Feoli, V. V. Nesterenko, and G. Scarpetta, Nucl. Phys. B 705, 577 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. V. Nesterenko, J. Math. Phys. 32, 3315 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. V. Nesterenko, Phys. Lett. B 327, 50 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. A. Gogilidze and Yu. S. Surovtsev, arXiv: hepth/9809191.

  16. P. Ramon, Field Theory: A Modern Primer (Benjamin, London, 1981).

    Google Scholar 

  17. V. L. Golo and E. I. Kats, J. Exp. Theor. Phys. 84, 1003 (1997).

    Article  ADS  Google Scholar 

  18. V. V. Nesterenko, A. Feoli, and G. Scarpetta, J. Math. Phys. 36, 5552 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. V. Ostrogradsky, Mem. Acad. Imper. Sci. SPb. 4, 385 (1850).

    Google Scholar 

  20. D. M. Gitman and I. V. Tyutin, Quantizationof Fields with Constraints (Springer, Berlin, 1991).

    Google Scholar 

  21. V. V. Nesterenko, J. Phys. A: Math. Gen. 22, 1673 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. V. Nesterenko, arXiv: hep-th/9309021v1.

  23. A. J. Hanson, T. Regge, and C. Teitelboim, Constraints Hamiltonian Systems (Academia Nazionale dei Lincei, Rome, 1976).

    Google Scholar 

  24. J. Govaerts, Hamiltonian Quantisation and Constrained Dynamics (Leuven Univ. Press, Leuven, 1991).

    Google Scholar 

  25. G. M. Malacinski and D. Freifelder, Essentials of Molecular Biology (Jones and Bartlett, Boston, 1998).

    Google Scholar 

  26. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walters, Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).

    Google Scholar 

  27. R. R. Sinden, DNA Structure and Function (Academic, New York, 1994).

    Google Scholar 

  28. J. D. Watson and F. H. C. Crick, Nature (London) 171, 737 (1953).

    Article  ADS  Google Scholar 

  29. S. Neidle, Principles of Nucleic Acid Structure (Academic, New York, 2008).

    Google Scholar 

  30. A. H.-J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. van Boom, G. van der Marel, and A. Rich, Nature (London) 282, 680 (1979).

    Article  ADS  Google Scholar 

  31. A. Rich, A. Norheim, and A. H. J. Wang, Ann. Rev. Biochem. 53, 791 (1984).

    Article  Google Scholar 

  32. M. A. Kastenholz, T. U. Schwartz, and P. H. Hunenberger, Biophys. J. 91, 2976 (2006).

    Article  ADS  Google Scholar 

  33. F. M. Pohl and T. M. Jovin, J. Mol. Biol. 67, 375 (1972).

    Article  Google Scholar 

  34. T. M. Jovin, D. M. Soumpasis, and L. P. McIntosh, Ann. Rev. Phys. Chem. 38, 521 (1987).

    Article  ADS  Google Scholar 

  35. F. M. Pohl, Cold Spring Harbor Symp. Quant. Biol. 47, 113 (1983).

    Article  Google Scholar 

  36. D. M. Soumpasis and T. M. Jovin, in Nucleic Acids and Molecular Biology, Ed. by F. Eckstein and D. M. J. Lilley (Springer, Berlin, 1987), p.85.

  37. M. Behe and G. Felsenfeld, Proc. Nat. Acad. Sci. USA 78, 1619 (1981).

    Article  ADS  Google Scholar 

  38. T. M. Jovin, L. P. McIntosh, D. J. Arndt-Jovin, D. A. Zarling, M. Robert-Nicoud, J. H. van de Sande, K. F. Jorgenson, and F. Eckstein, J. Biomol. Struct. Dynam. 1, 21 (1983).

    Article  Google Scholar 

  39. J. B. Chaires and J. M. Sturtevant, Proc. Nat. Acad. Sci. USA 83, 5479 (1986).

    Article  ADS  Google Scholar 

  40. R. F. Weaver, Molecular Biology, 2nd ed (McGraw-Hill, New York, 2004).

    Google Scholar 

  41. L. J. Peck and J. C. Wang, Proc. Nat. Acad. Sci. USA 80, 6206 (1983).

    Article  ADS  Google Scholar 

  42. T. R. O’Connor, D. S. Kang, and R. D. Wells, J. Biol. Chem. 261, 13302 (1986).

    Google Scholar 

  43. J. M. Ferreira and R. D. Sheardy, Biophys. J. 91, 3383 (2006).

    Article  ADS  Google Scholar 

  44. M. Yavari, Commun. Theor. Phys. 59, 125 (2013).

    Article  Google Scholar 

  45. M. Yavari, Int. J. Mod. Phys. B 27, 1350121 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Yavari, Eur. Phys. J. Plus 129, 21 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yavari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, M. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism. J. Exp. Theor. Phys. 122, 1104–1110 (2016). https://doi.org/10.1134/S1063776116050137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116050137

Navigation