Skip to main content
Log in

Three-Dimensional Model of a Structured Linearly Elastic Body

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The classical theory of elasticity implies the validity of Hooke’s law and the existence of partial spatial derivatives of displacements. A weakening of the latter assumption yields models with internal structure. Here we develop a three-dimensional elastic model with two structural levels. Microscopic elements of the medium experience local bending. Consideration is given to the contribution of the local bends to macroscopic deformation and rotation, the kinematic compatibility conditions, and the formulation of boundary value problems that ensure a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Panin, V.E., Foundations of Physical Mesomechanics, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 5–20.

    Google Scholar 

  2. Structural Levels of Plastic Deformation and Fracture, Panin, V.E., Ed., Novosibirsk: Nauka, 1990.

  3. Trusov, P.V., Some Questions of Nonlinear Solid Mechanics (as a Matter for Discussion), Mat. Model. Sist. Protsess., 2009, no. 17, pp. 85–95.

    Google Scholar 

  4. Revuzhenko, A.F. and Mikenina, O.A., Elastoplastic Model of Rock with Internal Self-Balancing Stresses, J. Mining Sci., 2018, vol. 54, no. 3, pp. 368–378. https://doi.org/10.15372/PMTF20180217

    Article  Google Scholar 

  5. Pavlov, I.S., Elastic Waves in a Two-Dimensional Granular Medium, Probl. Proch. Plastich., 2005, no. 67, pp. 119–131.

    Google Scholar 

  6. Pavlov, I.S. and Potapov, A.I., Two-Dimensional Model of a Granular Medium, Mech. Solids, 2007, vol. 42, no. 2, pp. 250–259.

    Article  ADS  Google Scholar 

  7. Povstenko, Y., Fractional Nonlocal Elasticity and Solutions for Straight Screw and Edge Dislocations, Phys. Mesomech., 2020, vol. 23, no. 6, pp. 547–555. https://doi.org/10.1134/S1029959920060107

    Article  Google Scholar 

  8. Makarov, P.V., Bakeev, R.A., and Smolin, I.Yu., Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory, Phys. Mesomech., 2019, vol. 22, no. 5, pp. 392–401. https://doi.org/10.1134/S1029959919050060

    Article  Google Scholar 

  9. Rys, M. and Petryk, H., Gradient Crystal Plasticity Models with a Natural Length Scale in the Hardening Law, Int. J. Plasticity, 2018, vol. 111, pp. 168–187. https://doi.org/10.1016/j.ijplas.2018.07.015

    Article  Google Scholar 

  10. Pouriayevali, H. and Xu, B.-X., Decomposition of Dislocation Densities at Grain Boundary in a Finite Deformation Gradient Crystal-Plasticity Framework, Int. J. Plasticity, 2017, vol. 96, pp. 36–55. https://doi.org/10.1016/j.ijplas.2017.04.010

    Article  Google Scholar 

  11. Erofeev, V.I. and Pavlov, I.S., Parametric Identification of Crystals Having a Cubic Lattice with Negative Poisson’s Ratios, J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 6, pp. 1015–1022. https://doi.org/10.15372/PMTF20150611

    Article  ADS  MathSciNet  Google Scholar 

  12. Zenkour, A.M. and Radwan, A.F., A Nonlocal Strain Gradient Theory for Porous Functionally Graded Curved Nanobeams under Different Boundary Conditions, Phys. Mesomech., 2020, vol. 23, no. 6, pp. 601–615. https://doi.org/10.1134/S1029959920060168

    Article  Google Scholar 

  13. Wu, Chih-Ping and Yu, Jung-Jen, A Review of Mechanical Analyses of Rectangular Nanobeans and Single-, Double-, and Multi-Walled Carbon Nanotubes Using Eringen’s Nonlocal Elasticity Theory, J. Arch. Appl. Mech., 2019, vol. 89, pp. 1761–1792. https://doi.org/10.1007/s00419-019-01542-z

    Article  ADS  Google Scholar 

  14. Sedighi, H.M. and Yaghootian, A., Dynamic Instability of Vibrating Carbon Nanotubes near Small Layers of Graphite Sheets Based on Nonlocal Continuum Elasticity, J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 1, pp. 90–100. https://doi.org/10.15372/PMTF20160110

    Article  ADS  MathSciNet  Google Scholar 

  15. Pavlov, I.S. and Lazarev, V.A., Nonlinear Elastic Waves in a Two-Dimensional Nanocrystalline Medium, Vestnik Nauch.-Tekhnol. Razv. Nat. Tekhnol. Gruppa, 2008, no. 4(8), pp. 45–53.

    Google Scholar 

  16. Loboda, O.S. and Krivtsov, A.M., The Influence of the Scale Factor on the Elastic Moduli of a 3D Nanocrystal, Mech. Solids, 2005, no. 4, pp. 20–32.

    Google Scholar 

  17. Eringen, A.C., Theory of Micropolar Elasticity, in Microcontinuum Field Theories, New York: Springer, 1999, pp. 101–248.

  18. Smolin, I.Yu., The Use of Micropolar Models to Describe Plastic Deformation at the Mesoscale, Mat. Model. Sist. Protsess., 2006, no. 14, pp. 189–205.

    Google Scholar 

  19. DiCarlo, Antonio, Continuum Mechanics as a Computable Coarse-Grained Picture of Molecular Dynamics, J. Elasticity, 2019, vol. 135, pp. 186–235. https://doi.org/10.1007/s10659-019-09734-y

    Article  MathSciNet  Google Scholar 

  20. Lewandowski, M.J. and Stupkiewicz, S., Size Effects in Wedge Indentation Predicted by a Gradient-Enhanced Crystal-Plasticity Model, Int. J. Plasticity, 2017, vol. 98, pp. 54–78. https://doi.org/

    Google Scholar 

  21. Liu, D. and Dunstan, D.J., Material Length Scale of Strain Gradient Plasticity: A Physical Interpretation, Int. J. Plasticity, 2017, vol. 98, pp. 156–174. https://doi.org/10.1016/j.ijplas.2017.07.007

    Article  Google Scholar 

  22. Pouriayevali, Habib and Xu, Bai-Xiang, A Study of Gradient Strengthening Based on a Finite-Deformation Gradient Crystal-Plasticity Model, Continuum Mech. Thermodyn., 2017, vol. 29, pp. 1389–1412. https://doi.org/10.1007/s00161-017-0589-3

    Article  ADS  MathSciNet  Google Scholar 

  23. Dabiao, Liu and Dunstan, D.J., Material Length Scale of Strain Gradient Plasticity: A Physical Interpretation, Int. J. Plasticity, 2017, vol. 98, pp. 156–174. https://doi.org/10.1016/j.ijplas.2017.07.007

    Article  Google Scholar 

  24. Aifantis, E.C., Internal Length Gradient (ILG) Material Mechanics Scales and Disciplines, J. Adv. Appl. Mech., 2016, vol. 49, pp. 1–110. https://doi.org/10.1016/bs.aams.2016.08.001

    Article  Google Scholar 

  25. Tarasov, V.E. and Aifantis, E.C, On Fractional and Fractal Formulation of Gradient Linear and Nonlinear Elasticity, J. Acta. Mech., 2019, vol. 230, pp. 2043–2070. https://doi.org/10.1007/s00707-019-2373-x

    Article  Google Scholar 

  26. Sibiryakov, B.P., Prilous, B.I., and Kopeikin, A.V., Nature of Instability of Block Media and Distribution Law of Unstable States, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 141–151.

    Article  Google Scholar 

  27. Umov, N.A., Selected Works, Moscow-Leningrad: Gos. Izd. Tekh.-Teor. Liter., 1950.

  28. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York: Dover Publications, 1944.

  29. Klishin, S.V. and Revuzhenko, A.F., Energy Flux Lines in a Deformable Rock Mass with Elliptical Openings, J. Mining Sci., 2009, vol. 45, no. 3, pp. 201–206.

    Article  Google Scholar 

  30. Lavrikov, S.V. and Revuzhenko, A.F., Model of Linear Elastic Theory with a Structural Parameter and Stress Concentration Analysis in Solids under Deformation, AIP Conf. Proc., 2018, vol. 2051, p. 020167. https://doi.org/10.1063/1.5083410

    Article  Google Scholar 

  31. Revuzhenko, A.F., Version of the Linear Elasticity Theory with a Structural Parameter, J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 5, pp. 801–807. https://doi.org/10.15372/PMTF20160506

    Article  ADS  MathSciNet  Google Scholar 

  32. Rueger, Z. and Lakes, R.S., Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice, J. Phys. Rev. Lett., 2018, vol. 120, p. 065501. https://doi.org/10.1103/PhysRevLett.120.065501

    Article  ADS  Google Scholar 

  33. Rueger, Z., Ha, C.S., and Lakes, R.S., Cosserat Elastic Lattices, Meccanica, 2019, vol. 54, pp. 1983–1999. https://doi.org/

    Article  Google Scholar 

  34. Drugan, W.J., Lakes, R.S., and Angew, Z., Torsion of a Cosserat Elastic Bar with Square Cross Section: Theory and Experiment, J. Math. Phys., 2018, vol. 69, no. 24. https://doi.org/10.1007/s00033-018-0913-1

  35. Rueger, Z. and Lakes, R.S., Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling, J. Elasticity, 2019, vol. 137, pp. 101–115. https://doi.org/10.1007/s10659-018-09714-8

    Article  MathSciNet  Google Scholar 

  36. Suknev, S.V., Nonlocal and Gradient Fracture Criteria for Quasi-Brittle Materials under Compression, Phys. Mesomech., 2019, vol. 22, no. 6, pp. 504–513. https://doi.org/10.1134/S1029959919060079

    Article  Google Scholar 

Download references

Funding

The work was carried out within the projects funded by the Russian Foundation for Basic Research (No. 20-05-00184) and Fundamental Research Program (State Reg. No. 121052500138-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Revuzhenko.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2021, Vol. 24, No. 3, pp. 26–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revuzhenko, A.F. Three-Dimensional Model of a Structured Linearly Elastic Body. Phys Mesomech 25, 33–41 (2022). https://doi.org/10.1134/S1029959922010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922010052

Keywords:

Navigation