Skip to main content
Log in

Theoretical model for thin ferroelectric films and the multilayer structures based on them

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ishibashi, H. Orihara, and D. R. Tilley, J. Phys. Soc. Jpn. 67, 3292 (1998).

    Article  ADS  Google Scholar 

  2. L.-H. Ong, J. Osman, and D. R. Tilley, Phys. Rev. B: Condens. Matter 63, 144109 (2001).

    Article  ADS  Google Scholar 

  3. M. Glinchuk, E. Eliseev, and V. Stephanovich, Phys. Solid State 44(5), 953 (2002).

    Article  ADS  Google Scholar 

  4. Z.-G. Ban, S. P. Alpay, and J. V. Mantese, Phys. Rev. B: Condens. Matter 67, 184104 (2003).

    Article  ADS  Google Scholar 

  5. A. L. Roytburd, S. Zhong, and S. P. Alpay, Appl. Phys. Lett. 87, 092902 (2005).

    Article  ADS  Google Scholar 

  6. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).

    Article  ADS  Google Scholar 

  7. A. K. Tagantsev and G. Gerra, J. Appl. Phys. 100, 051607 (2006).

    Article  ADS  Google Scholar 

  8. I. B. Misirlioglu, G. Akcay, S. Zhong, and S. P. Alpay, J. Appl. Phys. 101, 036107 (2007).

    Article  ADS  Google Scholar 

  9. J. H. Qiu and Q. Jiang, J. Appl. Phys. 103, 034119 (2008).

    Article  ADS  Google Scholar 

  10. X. Lu, B. Wang, Y. Zheng, and C. Li, J. Phys. D: Appl. Phys. 41, 035303 (2008).

    Article  ADS  Google Scholar 

  11. J. H. Qiu and Q. Jiang, J. Appl. Phys. 105, 034110 (2009).

    Article  ADS  Google Scholar 

  12. V. M. Fridkin, R. V. Gaynutdinov, and S. Ducharme, Phys.-Usp. 53(2), 199 (2010).

    Article  ADS  Google Scholar 

  13. K. Ishikawa and T. Uemori, Phys. Rev. B: Condens. Matter 60, 11841 (1999).

    Article  ADS  Google Scholar 

  14. B. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Springer-Verlag, Berlin, 2012).

    Google Scholar 

  15. A. Tagantsev, L. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer-Verlag, Berlin, 2010).

    Book  Google Scholar 

  16. M. Marvan, P. Chvosta, and J. Fousek, Appl. Phys. Lett. 86, 221922 (2005).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1995).

    Google Scholar 

  18. I. Savelyev and G. Leib, Fundamentals of Theoretical Physics (Mir, Moscow, 1982).

    Google Scholar 

  19. N. Akhiezer and M. Alferieff, The Calculus of Variations (Taylor and Francis, London, 1988).

    MATH  Google Scholar 

  20. I. Tamm, Fundamentals of the Theory of Electricity (Nauka, Moscow, 1976; Mir, Moscow, 1979).

    Google Scholar 

  21. V. N. Nechaev and A. V. Shuba, Bull. Russ. Acad. Sci.: Phys. 72(9), 1230 (2008).

    Article  Google Scholar 

  22. O. G. Vendik and S. P. Zubko, J. Appl. Phys. 82, 4475 (1997).

    Article  ADS  Google Scholar 

  23. H. Bateman, Higher Transcendental Functions (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  24. S. T. Davitadze, S. N. Kravchun, B. A. Strukov, B. M. Goltzman, V. V. Lemanov, and S. G. Shulman, Appl. Phys. Lett. 80, 1631 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Starkov.

Additional information

Original Russian Text © A.S. Starkov, O.V. Pakhomov, I.A. Starkov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 6, pp. 1144–1152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starkov, A.S., Pakhomov, O.V. & Starkov, I.A. Theoretical model for thin ferroelectric films and the multilayer structures based on them. J. Exp. Theor. Phys. 116, 987–994 (2013). https://doi.org/10.1134/S1063776113060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113060149

Keywords

Navigation