Skip to main content
Log in

Gauss-bonnet black holes and possibilities for their experimental search

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 1015 g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. O. Alexeyev and M. V. Pomazanov, Phys. Rev. D: Part. Fields 55, 2110 (1997).

    Article  ADS  Google Scholar 

  2. S. O. Alexeyev, M. V. Sazhin, and M. V. Pomazanov, Int. J. Mod. Phys. D 10, 225 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. O. Alexeyev and M. V. Sazhin, Gen. Relativ. Gravitation 30, 1187 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S. Alexeyev, A. Barrau, and K. Rannu, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 067503 (2009).

    Article  MathSciNet  Google Scholar 

  5. S. O. Alexeyev, M. V. Sazhin, and O. S. Khovanskaya, Astron. Lett. 28(3), 139 (2002).

    Article  ADS  Google Scholar 

  6. S. O. Alexeyev, A. Barrau, G. Boudoul, O. Khovanskaya, and M. Sazhin, Classical Quantum Gravity 19, 4431 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Alexeyev, A. Barrau, and J. Grain, Phys. Lett. B 584, 114 (2004).

    Article  ADS  Google Scholar 

  8. S. Alexeyev, A. Barrau, and J. Grain, Gravitation Cosmol. 11, 34 (2005).

    ADS  MATH  Google Scholar 

  9. S. Alexeyev, A. Barrau, and J. Grain, in Proceedings of the 13th International Seminar on High-Energy Physics “Quarks-2004,” Pushkinskie Gory, Pskov oblast, Russia, May 24–30, 2004, Ed. by D. G. Levkov, V. A. Matveev, and V. A. Rubakov (Pushkinskie Gory, 2004); http://quarks.inr.ac.ru/.

  10. S. Alexeyev, N. Popov, A. Barrau, and J. Grain, J. Phys.: Conf. Ser. 33, 343 (2006).

    Article  ADS  Google Scholar 

  11. S. Alexeyev, N. Popov, A. Barrau, and J. Grain, in Proceedings of the 22nd Texas Symposium on Relativistic Astrophysics, Stanford, California, United States, December 13–17, 2004 (Stanford, 2004).

  12. S. O. Alexeyev, N. N. Popov, T. S. Strunina, A. Barrau, and J. Grain, in Proceedings of the 14th International Seminar on High Energy Physics “Quarks-2006,” St. Petersburg, Russia, May 19–25, 2006, Ed. by V. A. Matveev and V. A. Rubakov (St. Petersburg, 2006); http://quarks.inr.ac.ru/.

  13. S. O. Alexeyev and N. N. Popov, in Proceedings of the International Conference of the 11th Marcel Grossmann Meeting on General Relativity, Berlin, Germany, July 23–29, 2006, Ed. by H. Kleinetr, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2008), Part A, p. 1251.

    Google Scholar 

  14. S. Alexeyev, A. Popov, M. Startseva, A. Barrau, and J. Grain, JETP 106(4), 709 (2008).

    Article  ADS  Google Scholar 

  15. V. P. Frolov, M. A. Marko, and V. F. Mukhanov, Phys. Lett. B 216, 272 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 54, 5049 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  17. D. L. Wiltshire, Phys. Lett. B 169, 39 (1986).

    MathSciNet  ADS  Google Scholar 

  18. G. W. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Lanczos, Z. Phys. A 73, 147 (1932); C. Lanczos, Ann. Math. 39, 842 (1938).

    Article  Google Scholar 

  20. G. Stephenson, Nuovo Cimento 9, 263 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. W. Higgs, Nuovo Cimento 11, 816 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Lovelock, J. Math. Phys. 12, 498 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. B. Zwiebach, Phys. Lett. B 156, 315 (1985); E. Poisson, Classical Quantum Gravity 8, 639 (1991); D. Witt, Phys. Rev. D: Part. Fields 38, 3000 (1988).

    Article  ADS  Google Scholar 

  24. D. Garfincle, G. Horowitz, and A. Strominger, Phys. Rev. D: Part. Fields 43, 3140 (1991).

    Article  ADS  Google Scholar 

  25. A. A. Starobinsky, JETP Lett. 86(3), 157 (2007).

    Article  ADS  Google Scholar 

  26. S. Nojiri and S. D. Odintsov, J. Phys. A: Math. Theor. 40, 6725 (2007).

    Article  ADS  MATH  Google Scholar 

  27. S. Mignemi and N. R. Stewart, Phys. Rev. D: Part. Fields 47, 5259 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Wheeler, Nucl. Phys. 268, 737 (1986).

    Article  ADS  Google Scholar 

  29. J. Wheeler, Nucl. Phys. 273, 732 (1986).

    Article  ADS  MATH  Google Scholar 

  30. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 57, 6255 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  31. O. Khovanskaya, Gravitation Cosmol. 8, 197 (2002).

    MathSciNet  ADS  MATH  Google Scholar 

  32. E. Ellis and B. G. Schmidt, Gen. Relativ. Gravitation 8, 915 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S. W. Hawking and E. Ellis, Large-Scale Structure of the Space-Time (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  34. T. Torii, H. Yajima, and K. Maeda, Phys. Rev. D: Part. Fields 55, 261 (1995).

    Google Scholar 

  35. S. O. Alexeyev and O. S. Khovanskaya, Gravitation Cosmol. 6, 14 (2000).

    MathSciNet  ADS  MATH  Google Scholar 

  36. S. Massar and R. Parentani, Nucl. Phys. B 19, 2671 (2000).

    MathSciNet  Google Scholar 

  37. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Srinivasan and T. Padamanabhan, Phys. Rev. D: Part. Fields 60, 24007 (1999).

    Article  ADS  Google Scholar 

  39. D. N. Page, Phys. Rev. D: Part. Fields 13, 198 (1976).

    Article  ADS  Google Scholar 

  40. B. Kleinhaus and J. Kunz, Phys. Rev. Lett. 79, 1595 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  41. I. D. Novikov and P. V. Frolov, Black Hole Physics: Basic Concepts and New Developments (Nauka, Moscow, 1986; Kluwer, Dordrecht, The Netherlands, 1998).

    Google Scholar 

  42. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952).

    MATH  Google Scholar 

  43. T. Pilling, in Talk at the 15th International Seminar on High-Energy Physics “Quarks-2008,” Sergiev Posad, Moscow oblast, Russia, May 23–29, 2008 (Sergiev Posad, 2008); arXiv:hep-th/0809.2701.

  44. V. Akhmedova, T. Pilling, A. deGill, and D. Singleton, Phys. Lett. B 666, 269 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Pilling, Phys. Lett. B 660, 402 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  46. L. D. Dedenko, G. F. Fedorova, T. M. Roganova, M. I. Pravdin, I. E. Sleptsov, V. A. Kolosov, A. V. Glushkov, D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky, Phys. At. Nucl. 70(1), 170 (2007).

    Article  Google Scholar 

  47. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1981; Energoatomizdat, Moscow, 1985).

    Google Scholar 

  48. C. M. Will and K. N. Nordtvert, Astrophys. J. 177, 757 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  49. C. M. Will and K. N. Nordtvert, Astrophys. J. 177, 775 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  50. Y. Sirois, Nucl. Phys. B 216, 169 (2011).

    Article  ADS  Google Scholar 

  51. S. B. Giddings and S. Thomas, Phys. Rev. D: Part. Fields 65, 056010 (2002).

    Article  ADS  Google Scholar 

  52. S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).

    Article  ADS  Google Scholar 

  53. N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 429, 257 (1998).

    ADS  Google Scholar 

  54. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).

    Article  ADS  Google Scholar 

  55. N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D: Part. Fields 59, 086004 (1999).

    Article  ADS  Google Scholar 

  56. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. S. B. Giddings and E. Katz, J. Math. Phys. 42, 3082 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. V. A. Rubakov, Phys.—Usp. 44(9), 871 (2001).

    Article  ADS  Google Scholar 

  59. D. M. Eardley and S. B. Giddings, Phys. Rev. D: Part. Fields 66, 044011 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  60. H. Yoshino and Y. Nambu, Phys. Rev. D: Part. Fields 66, 065004 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  61. D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).

    Article  ADS  Google Scholar 

  62. N. Deruelle and J. Madore, Mod. Phys. Lett. A 1, 237 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  63. N. Deruelle and L. Farina-Busto, Phys. Rev. D: Part. Fields 41, 3696 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Nojiri, S. D. Odintsov, and S. Ogushi, Phys. Rev. D: Part. Fields 65, 023521 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  65. M. E. Mavrotamos and J. Rizos, Phys. Rev. D: Part. Fields 62, 124004 (2000).

    Article  ADS  Google Scholar 

  66. Y. M. Cho, I. P. Neupane, and P. S. Wesson, Nucl. Phys. B 621, 388 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. B. C. Paul and S. Mukherjee, Phys. Rev. D: Part. Fields 42, 2595 (1990).

    Article  ADS  Google Scholar 

  68. B. Abdesselam and N. Mohammedi, Phys. Rev. D: Part. Fields 65, 084018 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  69. C. Charmousis and J. F. Dufaux, Classical Quantum Gravity 19, 4671 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. J. E. Lidsey and N. J. Nunes, Phys. Rev. D: Part. Fields 67, 103510 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  71. J. H. MacGibbon and B. R. Webber, Phys. Rev. D: Part. Fields 41, 3052 (1990).

    Article  ADS  Google Scholar 

  72. M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 72, 957 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. A. Padilla, Classical Quantum Gravity 20, 3129 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. C. M. Harris and P. Kanti, J. High Energy Phys. (online) 0310, 014 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  75. R. G. Cai, Phys. Rev. D: Part. Fields 65, 084014 (2002).

    Article  ADS  Google Scholar 

  76. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 54, 5049 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Barrau, G. Boudoul, F. Donato, D. Maurin, P. Salati, and R. Taillet, Astron. Astrophys. 388, 676 (2002).

    Article  ADS  Google Scholar 

  78. R. Emparan, G. T. Horowitz, and R. C. Myers, Phys. Rev. Lett. 85, 499 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  79. T. Tjostrand, Comput. Phys. Commun. 82, 74 (1994).

    Article  ADS  Google Scholar 

  80. ATLAS: Detector and Physics Performance Technical Design Report, Vol. 1, CERN-LHCC-99-14, ATLAS-TDR-14 (1999).

  81. D. N. Page, Phys. Rev. D: Part. Fields 14, 3260 (1976).

    Article  ADS  Google Scholar 

  82. R. C. Myers and M. J. Perry, Ann. Phys. (New York) 172, 304 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. G. W. Gibbons, H. Lu, D. N. Page, and C. N. Pope, Phys. Rev. Lett. 93, 171102 (2004).

    Article  ADS  Google Scholar 

  84. A. Anabalóon, N. Deruelle, Y. Morisawa, J. Oliva, M. Sasaki, D. Tempo, and R. Troncoso, Classical Quantum Gravity 26, 065002 (2009).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Alexeyev.

Additional information

Original Russian Text © S.O. Alexeyev, K.A. Rannu, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 3, pp. 463–487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeyev, S.O., Rannu, K.A. Gauss-bonnet black holes and possibilities for their experimental search. J. Exp. Theor. Phys. 114, 406–427 (2012). https://doi.org/10.1134/S1063776112030119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112030119

Keywords

Navigation