Skip to main content
Log in

Theory of superconductivity for Dirac electrons in graphene

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Phonon-exchange-induced superconducting pairing of effectively ultrarelativistic electrons in graphene is investigated. The Eliashberg equation obtained for describing pairing in the Cooper channel with allowance for delayed interaction are matrix equations with indices corresponding to the valence and conduction bands. The equations are solved in the high doping limit, in which pairing is effectively a single-band process, and in the vicinity of a critical quantum point of underdoped graphene for a value of the coupling constant for which pairing is an essentially multiband process. For such cases, analytic estimates are obtained for the superconducting transition temperature of the system. It is shown that the inclusion of dynamic effects makes it possible to determine the superconducting transition temperature, as well as the critical coupling constant for underdoped graphene, more accurately than in the static approximation of the BCS type. Estimates of the constants of electron interaction with the scalar optical phonon mode in graphene indicate that an appreciable superconducting transition temperature can be attained under a high chemical doping level of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175(1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552(1959).

    Article  ADS  MATH  Google Scholar 

  3. H. Schmidt, J. F. Zasadzinski, K. E. Gray, and D. G. Hinks, Phys. Rev. Lett. 88, 127 002 (2000).

    Google Scholar 

  4. V. Barzykin and L. P. Gorkov, Pis’ma Zh. Éksp. Teor. Fiz. 88(2), 142 (2008) [JETP Lett. 88 (2), 131 (2008)].

    Google Scholar 

  5. M. V. Sadovskii, Usp. Fiz. Nauk 178(12), 1243 (2008) [Phys.-Usp. 51 (12), 1201 (2008)].

    Article  Google Scholar 

  6. R. D. Pisarski and D. H. Rischke, Phys. Rev. D: Part. Fields 60, 094 013 (1999).

    Google Scholar 

  7. T. Ohsaku, Phys. Rev. B: Condens. Matter 65, 024512 (2001); Phys. Rev. B: Condens. Matter 66, 054518 (2002).

    ADS  Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  10. B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).

    Article  ADS  Google Scholar 

  11. A. M. Black-Schaffer and S. Doniach, Phys. Rev. B: Condens. Matter 75, 134512 (2007).

    ADS  Google Scholar 

  12. C. Honerkamp, Phys. Rev. Lett. 100, 164 404 (2008).

    Article  Google Scholar 

  13. S. Pathak, V. B. Shenoy, and G. Baskaran, arXivxond-mat/0809.0244v1.

  14. J. González, Phys. Rev. B: Condens. Matter 78, 205431 (2008).

    ADS  Google Scholar 

  15. H. B. Heersche, P. Jarillo-Herrero, J. O. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature (London) 446, 56 (2007).

    Article  ADS  Google Scholar 

  16. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  17. M. V. Feigel’man, M. A. Skvortsov, and K. S. Tikhonov, Pis’ma Zh. Éksp. Teor. Fiz. 88(11), 862 (2008) [JETP Lett. 88(11), 747(2008)].

    Google Scholar 

  18. Yu. E. Lozovik and A. A. Sokolik, Phys. Lett. A 373, 326 (2009).

    Article  Google Scholar 

  19. Yu. E. Lozovik and A. A. Sokolik, Pis’ma Zh. Éksp. Teor. Fiz. 87(1), 61 (2008) [JETP Lett. 87 (1), 55 (2008)].

    Google Scholar 

  20. Yu. E. Lozovik, S. P. Merkulova, and A. A. Sokolik, Usp. Fiz. Nauk 178(7), 757 (2008) [Phys.-Usp. 51 (7), 727 (2008)].

    Google Scholar 

  21. Yu. E. Lozovik and V. I. Yudson, Pis’ma Zh. Éksp. Teor. Fiz. 22(11), 556 (1975) [JETP Lett. 22 (11), 274 (1975)]; Zh. Éksp. Teor. Fiz. 71 (2), 738 (1976) [Sov. Phys. JETP 44 (2), 389 (1976)].

    Google Scholar 

  22. L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela (Leningrad) 6(9), 2791 (1964) [Sov. Phys. Solid State 6 (9), 2219(1964)].

    Google Scholar 

  23. T. Ohsaku, Int. J. Mod. Phys. B 18, 1771 (2004).

    Article  ADS  Google Scholar 

  24. N. B. Kopnin and E. B. Sonin, Phys. Rev. Lett. 100, 246808 (2008).

    Article  ADS  Google Scholar 

  25. A. H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001).

    Article  ADS  Google Scholar 

  26. E. C. Marino and L. H. Nunes, Nucl. Phys. B 741, 404 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. G. M. Éliashberg, Zh. Éksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696 (1960)].

    Google Scholar 

  28. G. A. Ummarino, R. S. Gonnelli, S. Massidda, and A. Bianconi, Physica C (Amsterdam) 407, 121 (2004).

    Article  ADS  Google Scholar 

  29. E. J. Nicol and J. P. Carbotte, Phys. Rev. B: Condens. Matter 71, 054 501 (2005).

    Google Scholar 

  30. O. V. Dolgov, I. I. Mazin, D. Parker, and A. A. Golubov, Phys. Rev. B: Condens. Matter 79, 060502(R) (2009).

    ADS  Google Scholar 

  31. G. A. Ummarino, M. Tortello, D. Daghero, and R S. Gonnelli, arXiv:cond-mat/0904.1808v2.

  32. D. T. Son, Phys. Rev. D: Part. Fields 59, 094019(1999).

    ADS  MathSciNet  Google Scholar 

  33. T. Schäfer and F. Wilczek, Phys. Rev. D: Part. Fields 60, 114 033(1999).

    Google Scholar 

  34. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  35. D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev. Lett. 14, 102(1965).

    Article  ADS  Google Scholar 

  36. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  37. S. V. Vonsovskis-, Yu. A. Izyumov, and É. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys, and Compounds (Nauka, Moscow, 1977), p. 44 [in Russian].

    Google Scholar 

  38. M. V. Medvedev, É. A. Pashitskis-, and Yu. S. Pyatiletov, Zh. Éksp. Teor. Fiz. 65(3), 1186 (1973) [Sov. Phys. JETP 38 (3), 587 (1973)].

    Google Scholar 

  39. S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185 503 (2004).

    Article  Google Scholar 

  40. D. M. Basko and I. L. Aleiner, Phys. Rev. B: Condens. Matter 77, 041409(R) (2008).

    ADS  Google Scholar 

  41. J. L. McChensey, A. Bostwick, T. Ohta, K. Emtsev, T. Seyller, K. Horn, and E. Rotenberg, arXivxond-mat/0809.4046v1.

  42. M. Calandra and F. Mauri, Phys. Rev. B: Condens. Matter 76, 205 411 (2007).

    Google Scholar 

  43. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, Phys. Rev. B: Condens. Matter 78, 193 404 (2008).

    Google Scholar 

  44. C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 086 804 (2007).

    Google Scholar 

  45. W.-K. Tse and S. Das Sarma, Phys. Rev. Lett. 99, 236802(2007).

    Article  ADS  Google Scholar 

  46. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).

    Article  Google Scholar 

  47. A. Bostwick, T. Ohta, and J. L. McChensey, New J. Phys. 9, 385 (2007).

    Article  ADS  Google Scholar 

  48. J. L. McChensey, A. Bostwick, T. Ohta, K. V. Emtsev, T. Seyller, K. Horn, and E. Rotenberg, arXivxond-mat/0705.3264.

  49. T. O. Wehling, H. P. Dahal, A. I. Lichtenstein, and A. V. Balatsky, Phys. Rev. B: Condens. Matter 76, 035414(2008).

    ADS  Google Scholar 

  50. R. Al-Jishi, Phys. Rev. B: Condens. Matter 28, 112 (1983).

    ADS  Google Scholar 

  51. E. Mariani and F. von Oppen, Phys. Rev. Lett. 100, 076801 (2008).

    Article  ADS  Google Scholar 

  52. D. V. Khveshchenko, J. Phys.: Condens. Matter 21, 075303 (2009).

    Article  ADS  Google Scholar 

  53. A. B. Migdal, Zh. Éksp. Teor. Fiz. 37, 249 (1960) [Sov. Phys. JETP 10 176 (1960)].

    Google Scholar 

  54. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. 6, 198 (2007).

    Article  ADS  Google Scholar 

  55. O. E. Dolgov and E. G. Maksimov, Usp. Fiz. Nauk 138(1), 95 (1982) [Sov. Phys.-Usp. 25 (9), 688 (1982)]. Translated by N. Wadhwa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Lozovik.

Additional information

Original Russian Text © Yu.E. Lozovik, S.L. Ogarkov, A.A. Sokolik, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ-Fiziki, 2010, Vol. 137, No. 1, pp. 57–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozovik, Y.E., Ogarkov, S.L. & Sokolik, A.A. Theory of superconductivity for Dirac electrons in graphene. J. Exp. Theor. Phys. 110, 49–57 (2010). https://doi.org/10.1134/S1063776110010073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110010073

Keywords

Navigation