Skip to main content
Log in

Distribution of germanium in Si1 − x Ge x (x < 0.1) layers grown on the Si(001) substrate as a function of layer thickness

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The germanium distribution in Si(001)/Si1 − x Ge x layers as a function of the layer thickness at a low dopant concentration (x < 6%) has been investigated using high-resolution X-ray diffractometry and low-temperature photoluminescence. It has been shown that the germanium concentration increases with increasing thickness of the SiGe layer with the formation of lateral inhomogeneities at the boundary between this layer and a silicon cap layer for a layer thickness of 30 nm or more. These inhomogeneities have an oriented character and give rise to anisotropic diffuse scattering for the system of (113) and (224) asymmetric reflections from SiGe. The luminescence of these films at low temperatures and low excitation densities is an emission of localized and delocalized excitons, which is characteristic of systems with disorder. The revealed nonuniform germanium distribution in the lateral direction is associated with the accumulation of germanium in the near-surface SiGe layer and with the partial relaxation of elastic strains due to the development of surface roughness and the preferred incorporation of germanium atoms into one side of the surface ripples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).

    Article  ADS  Google Scholar 

  2. J. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  ADS  Google Scholar 

  3. J. A. Floro, E. Chason, S. R. Lee, R. D. Twesten, R. Q. Hwang, and L. B. Freund, J. Electron. Mater. 26, 969 (1997).

    Article  ADS  Google Scholar 

  4. P. Sutter and M. G. Lagally, Phys. Rev. Lett. 84, 4637 (2000).

    Article  ADS  Google Scholar 

  5. R. M. Tromp, F. M. Ross, and M. C. Teuter, Phys. Rev. Lett. 84, 4641 (2000).

    Article  ADS  Google Scholar 

  6. J. Tersoff, B. J. Spencer, A. Rastelli, and H. von Kanel, Phys. Rev. Lett. 89, 196104 (2002).

    Article  ADS  Google Scholar 

  7. T. M. Burbaev, E. A. Bobrik, V. A. Kurbatov, M. M. Rzaev, N. N. Sibel’din, V. A. Tsvetkov, and F. Schäffler, Pis’ma Zh. Éksp. Teor. Fiz. 85(7), 410 (2007) [JETP Lett. 85 (7), 331 (2007)].

    Google Scholar 

  8. C. Lang, S. Kodambaka, F. M. Ross, and D. J. H. Cockayne, Phys. Rev. Lett. 97, 226104 (2006).

    Article  ADS  Google Scholar 

  9. R. D. James, Optical Principles of the Diffraction of X-Rays (Bell, London, 1948; Inostrannaya Literatura, Moscow, 1950).

    Google Scholar 

  10. J. Hornstra and W. J. Bartels, J. Cryst. Growth 44, 513 (1978).

    Article  ADS  Google Scholar 

  11. P. F. Fewster, X-Ray Scattering from Semiconductors (Imperial College Press, London, 2003).

    Google Scholar 

  12. J.-M. Baribeau, X. Wu, N. L. Rowell, and D. J. Lockwood, J. Phys.: Condens. Matter 18, R139 (2006).

    Article  ADS  Google Scholar 

  13. D. E. Savage, J. Kleiner, N. Schimke, Y.-H. Phang, T. Jankowski, J. Jacobs, R. Kariotis, and M. G. Lagally, J. Appl. Phys. 69, 1411 (1991).

    Article  ADS  Google Scholar 

  14. E. E. Fullerton, J. Pearson, C. H. Sowers, S. D. Bader, X. Z. Wu, and S. K. Sinha, Phys. Rev. B: Condens. Matter 48, 17432 (1992).

    ADS  Google Scholar 

  15. P. J. Dean, J. R. Haynes, and W. F. Flood, Phys. Rev. 161(3), 711 (1967).

    Article  ADS  Google Scholar 

  16. J. Christen and D. Bimberg, Phys. Rev. B: Condens. Matter 42, 7213 (1990).

    ADS  Google Scholar 

  17. D. J. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, J. Appl. Phys. 71, 1407 (1992).

    Article  ADS  Google Scholar 

  18. V. P. Martovitsky, V. I. Kozlovsky, P. I. Kuznetsov, and D. A. Sannikov, Zh. Éksp. Teor. Fiz. 132(6), 1379 (2007) [JETP 105 (6), 1209 (2007)].

    Google Scholar 

  19. V. Holy, A. A. Darhuber, J. Stangl, G. Bauer, J. Nutzel, and G. Abstreiter, Phys. Rev. B: Condens. Matter 57, 12435 (1998).

    ADS  Google Scholar 

  20. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Borici, J. R. Barker, A. Asenov, and S. Roy, Semicond. Sci. Technol. 19, 1174 (2004).

    Article  ADS  Google Scholar 

  21. M. M. Rieger and P. Vogl, Phys. Rev. B: Condens. Matter 48, 14277 (1993).

    ADS  Google Scholar 

  22. G. Bastard, Phys. Rev. B: Condens. Matter 24, 5693 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Martovitsky.

Additional information

Original Russian Text © V.S. Bagaev, V.S. Krivobok, V.P. Martovitsky, A.V. Novikov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 6, pp. 1154–1169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagaev, V.S., Krivobok, V.S., Martovitsky, V.P. et al. Distribution of germanium in Si1 − x Ge x (x < 0.1) layers grown on the Si(001) substrate as a function of layer thickness. J. Exp. Theor. Phys. 109, 997–1010 (2009). https://doi.org/10.1134/S1063776109120115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109120115

Keywords

Navigation