Skip to main content
Log in

Real-time stress evolution during Si1-xGex Heteroepitaxy: Dislocations, islanding, and segregation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have used sensitive real-time measurements of film stress during Si1-xGex molecular beam epitaxy to examine strain relaxation due to coherent island formation, and to probe the kinetics of Ge surface segregation. We first describe our novel curvature-measurement technique for real-time stress determination. Measurements of the relaxation kinetics during high temperature Si79Ge21 growth on Si (001) are reported in which formation of highly regular arrays of [501]-faceted islands produce 20% stress relaxation. An island shape transition is also observed that reduces the effective stress by up to 50% without dislocations. Nonuniform composition profiles due to Ge surface segregation during growth of planar alloy films are determined with submonolayer thickness resolution from the real-time stress evolution. Up to two monolayers of Ge can segregate to the growth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund, J. Mech. Phys. Solids 38, 657 (1990).

    Article  Google Scholar 

  2. Brian W. Dodson and Jeffrey Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  CAS  Google Scholar 

  3. A.J. Pidduck, D.J. Robbins, A.G. Cullis, W.Y. Leong and A.M. Pitt, Thin Solid Films 222, 78 (1992).

    Article  CAS  Google Scholar 

  4. M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, H.P. Strunk, P.O. Hansson and E. Bauer, Appl. Phys. Lett. 67, 1232 (1995).

    Article  CAS  Google Scholar 

  5. D.E. Jesson, K.M. Chen, S. J. Pennycook, T. Thundat and R.J. Warmack, Phys. Rev. Lett. 77, 1330 (1996).

    Article  CAS  Google Scholar 

  6. D.J. Srolovitz, Acta Metall. 37, 621 (1989).

    Article  Google Scholar 

  7. B.J. Spencer, P.W. Voorhees and S.H. Davis, J. Appl. Phys. 73, 4955 (1993).

    Article  CAS  Google Scholar 

  8. J. Tersoff and F.K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  CAS  Google Scholar 

  9. K.Y. Cheng, K.C. Hsich and J.N. Baillargeon, Appl. Phys. Lett. 60, 2892 (1992).

    Article  CAS  Google Scholar 

  10. J. Mirecki-Millunchick et al., to be published in Appl. Phys. Lett.

  11. J.E. Guyer and P.W. Voorhees, Phys. Rev. B 54, 11710 (1996).

    Google Scholar 

  12. J. Tersoff, Phys. Rev. Lett. 77, 2017 (1996).

    Article  CAS  Google Scholar 

  13. S.P. Ahrenkiel et al., Phys. Rev. Lett. 75, 1586 (1995).

    Article  CAS  Google Scholar 

  14. J.A. Floro and E. Chason, Appl. Phys. Lett. 69, 3830 (1996).

    Article  CAS  Google Scholar 

  15. J. Mirecki-Millunchick and S.A. Barnett, APL 65, 1136 (1994).

    CAS  Google Scholar 

  16. G.L. Price, Appl. Phys. Lett. 53, 1288 (1988).

    Article  CAS  Google Scholar 

  17. G.J. Whaley and P.I. Cohen, Appl. Phys. Lett. 57, 144 (1990).

    Article  CAS  Google Scholar 

  18. B.M. Lairson et al., J. Appl. Phys. 78, 4449 (1995).

    Article  CAS  Google Scholar 

  19. E. Kobeda and E.A. Irene, J. Vac. Sci. Tech. B 4, 720 (1986).

    Article  CAS  Google Scholar 

  20. A.J. Schell-Sorokin and R.M. Tromp, Phys. Rev. Lett. 64, 1030 (1990).

    Article  Google Scholar 

  21. G.J. Leusink, T.G.M. Oosterlaken, G.C.A.M. Janssen and S. Radelaar, Rev. Sci. Instrumen. 63, 3143 (1992).

    Article  CAS  Google Scholar 

  22. C.A. Volkert, J. Appl. Phys. 70, 3521 (1991).

    Article  CAS  Google Scholar 

  23. A.L. Shull and F. Spaepen, J. Appl. Phys. 80, 6243 (1996).

    Article  CAS  Google Scholar 

  24. J. A. Floro and E. Chason, Mater. Res. Soc. Symp. Proc. 406, 491 (Pittsburgh, PA: Mater. Res. Soc., 1996).

    Google Scholar 

  25. A. Grossman, W. Erley, J.B. Hannon and H. Ibach, Phys. Rev. Lett. 77, 127 (1996).

    Article  Google Scholar 

  26. G.J. Exharos and N.J. Hess, J. Raman. Spectroscopy 27, 765 (1996).

    Article  Google Scholar 

  27. C.M. Su and M. Wuttig, Appl. Phys. Lett. 63, 3437 (1993).

    Article  CAS  Google Scholar 

  28. Paul A. Flinn, Donald S. Gardner and William D. Nix, IEEE Trans. Electron Devices ED-34, 689 (1987).

    CAS  Google Scholar 

  29. Robert E. Marunez, Walter M. Augustyniak and Jene A. Golovchenko, Phys. Rev. Lett. 64, 1035 (1990).

    Article  Google Scholar 

  30. k-Space Associates, Inc.,2231 Stone Drive, Ann Arbor, MI 48105.

  31. E. Chason and J.A. Floro, Mater. Res. Soc. Symp. Proc. 428, 499 (Pittsburgh, PA: Mater. Res. Soc, 1996).

    Google Scholar 

  32. G.G. Stoney, Proc. Roy. Soc. A82, 172 (1909).

    Article  Google Scholar 

  33. R.C. Cammarata, Progress in Surf. Sci. 46, 1 (1994).

    Article  CAS  Google Scholar 

  34. Mary F. Doerner and William D. Nix, CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).

    Article  CAS  Google Scholar 

  35. Cengiz Oskan and William D. Nix, Mater. Res. Soc. Symp. Proc. 399, 407 (Pittsburgh, PA: Mater. Res. Soc, 1996).

    Google Scholar 

  36. A.J. Steinfort et al, Phys. Rev. Lett. 77, 2009 (1996).

    Article  CAS  Google Scholar 

  37. J.A. Floro, E. Chason, R.Q. Hwang, R.D. Twesten and L.B. Freund, submitted to Phys. Rev. Lett.

  38. Y.-W. Mo, D.E. Savage, B.S. Swartzentruber and M.G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).

    Article  CAS  Google Scholar 

  39. N. Bertru, O. Brandt, M. Wassermeier and K. Ploog, Appl. Phys. Lett. 68, 31 (1996).

    Article  CAS  Google Scholar 

  40. M.D. Williams, T.H. Chiu and F.G. Strorz, J. Vac. Sci. Tech. B 13, 692 (1995).

    Article  CAS  Google Scholar 

  41. P.C. Zalm, G.F.A. van de Walle, D.J. Gravesteijn and A.A.van Gorkum, Appl. Phys. Lett. S5, 2520 (1989).

    Article  Google Scholar 

  42. D.E. Jesson, S.J. Pennycook and J.-M. Baribeau, Phys. Rev. Lett. 66, 750 (1991).

    Article  CAS  Google Scholar 

  43. S. Fukatsu, K. Fujita, H. Yaguchi, Y. Shiraki and R. Ito, Appl. Phys. Lett. 59, 2103 (1991).

    Article  CAS  Google Scholar 

  44. K. Fujita, S. Fukatsu, H. Yaguchi, Y. Shiraki and R. Ito, Appl. Phys. Lett. S9, 2240 (1991).

    Article  Google Scholar 

  45. D.J. Godbey and M.G. Ancona, Appl. Phys. Lett. 61, 2217 (1992).

    Article  CAS  Google Scholar 

  46. D.J. Godbey and M.G. Ancona, J. Vac. Sci. Tech. B 11, 1120 (1993).

    Article  CAS  Google Scholar 

  47. D.J. Godbey and M.G. Ancona, J. Vac. Sci. Tech. B 11, 1392 (1993).

    Article  CAS  Google Scholar 

  48. D.J. Godbey, J.V. Lill, J. Deppe and K.D. Hobart, Appl. Phys. Lett. 65, 711 (1994).

    Article  CAS  Google Scholar 

  49. Glenn G. Jernigan, Phillip E. Thompson and Conrad L. Silvestre, Appl. Phys. Lett. 69, 1894 (1996).

    Article  CAS  Google Scholar 

  50. In Refs. 45–49, the regime we call the denuded zone is referred to as the “leading edge,” while our enriched zone is referred to as the “trailing edge.”

  51. J.P. Dismukes, L. Ekstrom and R.J. Paff, J. Phys. Chem. 68, 3021 (1964).

    Article  CAS  Google Scholar 

  52. Fang Wu and M.G. Lagally, Phys. Rev. Lett. 75, 2534 (1995).

    Article  CAS  Google Scholar 

  53. M. Hammar, F.K. LeGoues, J. Tersoff, M.C. Reuter and R.M. Tromp, Surf. Sci. 349, 129 (1996).

    Article  CAS  Google Scholar 

  54. W. Yu and A. Madhukar, Proc. ICPS 23, Vol. 2, eds.,M. Schaffler and R. Zimmerman (World Scientific, Berlin, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floro, J.A., Chason, E., Lee, S.R. et al. Real-time stress evolution during Si1-xGex Heteroepitaxy: Dislocations, islanding, and segregation. J. Electron. Mater. 26, 969–979 (1997). https://doi.org/10.1007/s11664-997-0233-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0233-2

Key words

Navigation