Skip to main content
Log in

Structural and optical properties of metastable SiGe/Si films with a low germanium concentration

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties of metastable Si1 − x Ge x /Si (10% < x < 16%) layers grown by molecular beam epitaxy on Si(100) substrates have been investigated using atomic force microscopy, X-ray diffraction, and low-temperature luminescence spectroscopy. It has been shown that ring-like aggregates are formed on the surface of layers grown at temperatures of 500–700°C. The size and shape of these aggregates suggest that their formation is associated with the diffusion instability arising due to the existence of a relationship between the surface diffusion, stresses, and the wetting potential during the growth of the epitaxial film. The existence of deviations from the homogeneous germanium distribution in the layer plane has been confirmed by a detailed analysis of the X-ray rocking curves and two-dimensional diffraction patterns. The structures with severe surface disturbances are characterized by an abnormal change in the decay times of the emission lines of bulk silicon, which indicate the presence of local electric and/or strain fields in subsurface regions. The perturbations of the flat crystallization front are suppressed as the growth temperature of layers decreases to 350°C. Despite the absence of a coating layer of silicon, the photoluminescence spectra of the layers themselves depend weakly on their thickness and growth temperature and remain sensitive only to the technological concentration of germanium. A slowly decaying luminescence associated presumably with the localization of excitons near the SiGe-Si interface has been observed in one of the samples grown at a temperature of 700°C and containing a dense array of ring-like aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Borici, J. R. Barker, A. Asenov, and S. Roy, Semicond. Sci. Technol. 19, 1174 (2004).

    Article  ADS  Google Scholar 

  2. G. Sun, Y. Sun, T. Nishida, and S. E. Thompson, J. Appl. Phys. 102, 084501 (2007).

    Article  ADS  Google Scholar 

  3. S. F. Feste, T. Schäpers, D. Buca, Q.T. Zhao, J. Knoch, M. Bouhassoune, A. Schindlmayr, and S. Mantl, Appl. Phys. Lett. 95, 182101 (2009).

    Article  ADS  Google Scholar 

  4. F. Lanzerath, D. Buca, H. Trinkaus, M. Goryll, S. Mantl, J. Knoch, U. Breuer, W. Skorupa, and B. Ghyselen, J. Appl. Phys. 104, 044908 (2008).

    Article  ADS  Google Scholar 

  5. C. Ahn, N. Bennett, S. T. Dunham, and N. E. B. Cowern, Phys. Rev. B: Condens. Matter 79, 073201 (2009).

    Article  ADS  Google Scholar 

  6. W. Heiermann, D. Buca, H. Trinkaus, B. Hollaender, U. Breuer, N. Kernevez, B. Ghyselen, and S. Mantl, ECS Trans. 19, 95 (2009).

    Article  Google Scholar 

  7. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).

    Article  ADS  Google Scholar 

  8. E. Kasper, A. Schuh, G. Bauer, B. Hollander, and H. Kibbel, J. Cryst. Growth 157, 68 (1995).

    Article  ADS  Google Scholar 

  9. R. Hull, in Properties of Silicon Germanium and SiGe: Carbon, Ed. by E. Kasper and K. Lyutovich (Institution of Engineering and Technology, Stevenage, Hertfordshire, United Kingdom, 2000), p. 21.

  10. M. L. Green, B. E. Weir, D. Brasen, Y. F. Hsieh, G. Higashi, A. Feygenson, L. C. Feldman, and R. L. Headrick, J. Appl. Phys. 69, 745 (1991).

    Article  ADS  Google Scholar 

  11. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985); R. People and J. C. Bean, Appl. Phys. Lett. 48, 229 (1986).

    Article  ADS  Google Scholar 

  12. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, M. L. Skorikov, A. V. Novikov, and D. N. Lobanov, JETP Lett. 94(1), 63 (2011).

    Article  ADS  Google Scholar 

  13. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, A. A. Pruchkina, D. F. Aminev, M. L. Skorikov, D. N. Lobanov, and A. V. Novikov, J. Exp. Theor. Phys. 117(5), 912 (2013).

    Article  ADS  Google Scholar 

  14. T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, Phys. Rev. Lett. 86, 2381 (2001).

    Article  ADS  Google Scholar 

  15. Y. Tu and J. Tersoff, Phys. Rev. Lett. 93, 216101 (2004).

    Article  ADS  Google Scholar 

  16. A. V. Osipov, S. A. Kukushkin, F. Scmitt, and P. Hess, Phys. Rev. B: Condens. Matter 64, 205421 (2001).

    Article  ADS  Google Scholar 

  17. V. B. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B: Condens. Matter 68, 075409 (2003).

    Article  ADS  Google Scholar 

  18. T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, Phys. Rev. Lett. 86, 2381 (2001).

    Article  ADS  Google Scholar 

  19. Y. Tu and J. Tersoff, Phys. Rev. Lett. 93, 216101 (2004).

    Article  ADS  Google Scholar 

  20. A. V. Osipov, S. A. Kukushkin, F. Scmitt, and P. Hess, Phys. Rev. B: Condens. Matter 64, 205421 (2001).

    Article  ADS  Google Scholar 

  21. V. B. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B: Condens. Matter 68, 075409 (2003).

    Article  ADS  Google Scholar 

  22. G. D. Mahan, Phys. Rev. B 153, 882 (1967).

    Article  ADS  Google Scholar 

  23. Yaoyu Pang and Rui Huang, Phys. Rev. B: Condens. Matter 74, 075413 (2006).

    Article  ADS  Google Scholar 

  24. W. Tekalign and B. Spencer, J. Appl. Phys. 96, 5505 (2004).

    Article  ADS  Google Scholar 

  25. B. Spencer and D. Meiron, Acta Metall. Mater. 42, 3629 (1994).

    Article  Google Scholar 

  26. V. P. Martovitsky and V. S. Krivobok, J. Exp. Theor. Phys. 113(2), 288 (2011).

    Article  ADS  Google Scholar 

  27. F. Schäffler, in Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe, Ed. by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001).

  28. J. Wortman and A. Evans, J. Appl. Phys. 36, 153 (1965).

    Article  ADS  Google Scholar 

  29. A. Rastelli, H. von Känel, B. J. Spencer, and J. Tersoff, Phys. Rev. B: Condens. Matter 68, 115301 (2003).

    Article  ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth-Heinemann, Oxford, 1995), p. 39.

    Google Scholar 

  31. V. S. Bagaev, V. S. Krivobok, V. P. Martovitsky, and A. V. Novikov, J. Exp. Theor. Phys. 109(6), 997 (2009).

    Article  ADS  Google Scholar 

  32. V. S. Bagaev, V. V. Zaitsev, V. S. Krivobok, D. N. Lobanov, S. N. Nikolaev, A. V. Novikov, and E. E. Onishchenko, J. Exp. Theor. Phys. 107(5), 846 (2008).

    Article  ADS  Google Scholar 

  33. C. B. Guillaume, J. M. Debever, and F. Salvan, Phys. Rev. 177, 567 (1969).

    Article  ADS  Google Scholar 

  34. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, A. V. Novikov, E. E. Onishchenko, and M. L. Skorikov, Phys. Rev. B: Condens. Matter 82, 115313 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Additional information

Original Russian Text © V.S. Bagaev, V.S. Krivobok, D.N. Lobanov, A.N. Minnullin, S.N. Nikolaev, A.N. Shaleev, S.V. Shevtsov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 10, pp. 1896–1905.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagaev, V.S., Krivobok, V.S., Lobanov, D.N. et al. Structural and optical properties of metastable SiGe/Si films with a low germanium concentration. Phys. Solid State 56, 1957–1966 (2014). https://doi.org/10.1134/S1063783414100023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414100023

Keywords

Navigation