Skip to main content
Log in

The incommensurate magnetic structure of a tetragonal antiferromagnet with antisymmetric exchange

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Analysis of the incommensurate magnetic structure that emerges for two coexisting types of the antisymmetric Dzyaloshinski-Moriya exchange interaction (the weakly ferromagnetic component of vector D along the tetragonal axis and the helicoidal component distributed in the tetragonal plane) is carried out for the first time for a tetragonal antiferromagnet. The helicoidal component for each pair of interacting spins has a 2D distribution; its direction in the tetragonal plane depends on the direction of the exchange bond in each pair. The Lifshits invariant of the Ginzburg-Landau functional is obtained, which is responsible for the formation of an incommensurate magnetic structure for such a distribution. It is shown in the mean field approximation that the incommensurate magnetic structure that forms in this case is a nonlinear double helicoid with a modulation vector lying in the tetragonal plane and with a varying angle between the polarization planes of quasi-antiferromagnetic sublattices. The ground state of the magnet is degenerate in the orientation of the modulation vector in the tetragonal plane. The rate of variation in the orientations of moments in the polarization planes passing through the tetragonal axis is controlled by the angle between the directions of the moments and the tetragonal axis. The local weakly ferromagnetic moment remaining in the polarization plane varies in magnitude and sign. The relation between the orientations of the modulation and polarization vectors is derived for the cases of simple and inversion tetragonal axes in the space symmetry group of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry (Nauka, Moscow, 1984; Kluwer, New York, 1990), p. 208.

    Google Scholar 

  2. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and the Physical Properties of Antiferromagnets (Nauka, Moscow, 2001), p. 104 [in Russian].

    Google Scholar 

  3. I. E. Dzyaloshinskiĭ, Zh. Éksp. Teor. Fiz. 47, 992 (1964) [Sov. Phys. JETP 20, 665 (1964)].

    Google Scholar 

  4. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  5. M. Oshikawa and I. Affleck, Phys. Rev. Lett. 79, 2883 (1997).

    Article  ADS  Google Scholar 

  6. I. Affleck and M. Oshikawa, Phys. Rev. B: Condens. Matter 60, 1038 (1999).

    ADS  Google Scholar 

  7. U. Schotte, A. Kelnberger, and N. Stusser, J. Phys.: Condens. Matter 10, 6391 (1998).

    Article  ADS  Google Scholar 

  8. A. E. Jacobs and T. Nikuni, J. Phys.: Condens. Matter 10, 6405 (1998).

    Article  ADS  Google Scholar 

  9. D. N. Aristov and S. V. Maleev, Phys. Rev. B: Condens. Matter 62, R751 (2000).

    ADS  Google Scholar 

  10. E. A. Turov, Physical Properties of Magnetically Ordered Crystals (Academy of Science of the Soviet Union, Moscow, 1963; Academic, New York, 1965), p. 94.

    Google Scholar 

  11. O. Nakanashi, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).

    Article  ADS  Google Scholar 

  12. Per Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, L881 (1980).

    Article  ADS  Google Scholar 

  13. A. Zheludev, S. Maslov, G. Shirane, I. Tsukada, T. Masuda, K. Uchinokura, I. Zaliznyak, R. Erwin, and L. P. Regnault, Phys. Rev. B: Condens. Matter 59, 11432 (1999).

    ADS  Google Scholar 

  14. Yu. A. Izyumov, Neutron Diffraction by Long-Periodic Structures (énergoatomizdat, Moscow, 1987), pp. 27, 154 [in Russian].

    Google Scholar 

  15. S. N. Martynov, Pis’ma Zh. Éksp. Teor. Fiz. 90(1), 60 (2009) [JETP Lett. 90 (1), 55 (2009)].

    Google Scholar 

  16. S. N. Martynov, Zh. Éksp. Teor. Fiz. 135(1), 82 (2009) [JETP 108 (1), 72 (2009)].

    Google Scholar 

  17. A. Zheludev, G. Shirane, Y. Sasago, N. Kiode, and K. Uchinokura, Phys. Rev. B: Condens. Matter 54, 15163 (1996).

    ADS  Google Scholar 

  18. A. Zheludev, S. Maslov, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokura, Phys. Rev. Lett. 78, 4857 (1997).

    Article  ADS  Google Scholar 

  19. A. Zheludev, S. Maslov, G. Shirane, Y. Sasago, N. Koide, K. Uchinokura, D. A. Tennant, and S. E. Nagler, Phys. Rev. B: Condens. Matter 56, 14006 (1997).

    ADS  Google Scholar 

  20. A. Zheludev, S. Maslov, I. Tsukada, I. Zaliznyak, L. P. Regnault, T. Masuda, K. Uchinokura, R. Erwin, and G. Shirane, Phys. Rev. Lett. 81, 5410 (1998).

    Article  ADS  Google Scholar 

  21. G. Petrakovskii, D. Velikanov, A. Vorotinov, A. Balaev, K. Sablina, A. Amato, B. Roessli, J. Schefer, and U. Staub, J. Magn. Magn. Mater. 205, 105 (1999).

    Article  ADS  Google Scholar 

  22. G. A. Petrakovskiĭ, M. A. Popov, B. Roessli, and B. Ouladdiaf, Zh. Éksp. Teor. Fiz. 120(4), 926 (2001) [JETP 93 (4), 809 (2001)].

    Google Scholar 

  23. B. Roessli, J. Schefer, G. Petrakovskii, B. Ouladdiaf, M. Boehm, U. Staub, A. Vorotinov, and L. Bezmaternikh, Phys. Rev. Lett. 86, 1885 (2001).

    Article  ADS  Google Scholar 

  24. M. Boehm, S. Martynov, B. Roessli, G. Petrakovskii, and J. Kulda, J. Magn. Magn. Mater. 250, 313 (2002).

    Article  ADS  Google Scholar 

  25. M. Boehm, B. Roessli, J. Schefer, A. S. Wills, B. Ouladdiaf, E. Leliévre-Berna, U. Staub, and G. A. Petrakovskii, Phys. Rev. B: Condens. Matter 68, 024 405 (2003).

    Google Scholar 

  26. S. Martynov, G. Petrakovskii, and B. Roessli, J. Magn. Magn. Mater. 269, 3106 (2004).

    Article  Google Scholar 

  27. S. N. Martynov and A. D. Balaev, Pis’ma Zh. Éksp. Teor. Fiz. 85(12), 785 (2007) [JETP Lett. 85 (12), 649 (2007)].

    Google Scholar 

  28. A. I. Pankrats, G. A. Petrakovskii, M. A. Popov, K. A. Sablina, L. A. Prozorova, S. S. Sosin, G. Szimczak, R. Szimczak, and M. Baran, Pis’ma Zh. Éksp. Teor. Fiz. 78(9), 1058 (2003) [JETP Lett. 78 (9), 569 (2003)].

    Google Scholar 

  29. A. Pankrats, G. Petrakovskii, V. Tugarinov, K. Sablina, L. Bezmaternykh, R. Szymczak, M. Baran, B. Kundys, and A. Nabialek, J. Magn. Magn. Mater. 300, e388 (2006).

    Article  ADS  Google Scholar 

  30. M. Saito, K. Taniguchi, and T. Arima, J. Phys. Soc. Jpn. 77, 013 705 (2008).

    Google Scholar 

  31. M. Saito, K. Ishikawa, K. Taniguchi, and T. Arima, Phys. Rev. Lett. 101, 117 402 (2008).

    Google Scholar 

  32. T. Arima, J. Phys.: Condens. Matter 20, 434 211 (2008).

    Article  Google Scholar 

  33. S. W. Lovesey and U. Staub, J. Phys.: Condens. Matter 21, 142 201 (2009).

    Google Scholar 

  34. Y. Kousaka, S. Yano, M. Nishi, K. Hirota, and J. Akimitsu, J. Phys. Chem. Solids 68, 2170 (2007).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.N. Martynov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 6, pp. 1134–1144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynov, S.N. The incommensurate magnetic structure of a tetragonal antiferromagnet with antisymmetric exchange. J. Exp. Theor. Phys. 109, 979–988 (2009). https://doi.org/10.1134/S1063776109120097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109120097

Keywords

Navigation