Skip to main content
Log in

Bremsstrahlung from collisions of low-energy electrons with positive ions in a magnetic field

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Bremsstrahlung from electron-ion collisions in a magnetic field is studied for low energies at which the Larmor radius of an electron is smaller than the characteristic impact parameter of close collisions in zero magnetic field. It is shown that the magnetic field does not qualitatively change the bremsstrahlung power at low frequencies smaller than the reciprocal time of electron transit in the vicinity of an ion in close collision in zero magnetic field. At high frequencies, the radiation intensity decreases in accordance with a power law, attains its minimal value, and then increases in accordance with a power law up to frequencies on the order of the electron cyclotron frequency. At such frequencies, the spectral power attains typical power values in zero magnetic field. At frequencies lower than the cyclotron frequency considered here, bremsstrahlung is polarized predominantly linearly in the plane formed by the magnetic field and the direction of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zheleznyakov, Radiation in Astrophysical Plasma (Yanus-K, Moscow, 1997), Part 13.1 [in Russian].

    Google Scholar 

  2. V. V. Zheleznyakov, S. A. Koryagin, and A. V. Serber, Pis’ma Astron. Zh. 25(7), 513 (1999) [Astron. Lett. 25 (7), 437 (1999)].

    Google Scholar 

  3. S. A. Koryagin, Zh. Éksp. Teor. Fiz. 117(5), 853 (2000) [JETP 90 (5), 741 (2000)].

    Google Scholar 

  4. G. Schmidt, E. E. Kunhardt, and J. L. Godino, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 7512 (2000).

    Google Scholar 

  5. B. Hu, W. Horton, C. Chiu, and T. Petrosky, Phys. Plasmas 9, 1116 (2002).

    Article  ADS  Google Scholar 

  6. B. Hu, W. Horton, and T. Petrosky, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 056212 (2002).

  7. C. E. Correa, J. R. Correa, and C. A. Ordonez, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 046406 (2005).

  8. S. A. Koryagin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 51, 512 (2008) [Radiophys. Quantum Electron. 51, 462 (2008)].

    Google Scholar 

  9. S. A. Koryagin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 51, 682 (2008).

    Google Scholar 

  10. D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pac. 112, 873 (2000).

    Article  ADS  Google Scholar 

  11. M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, V. Filippini, K. S. Fine, A. Fontana, M. C. Fujiwara, R. Funakoshi, P. Genova, J. S. Hangst, R. S. Hayano, M. H. Holzscheiter, L. V. Jórgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macri, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T. L. Watson, and D. P. van der Werf, Nature (London) 419, 456 (2002).

    Article  ADS  Google Scholar 

  12. G. Gabrielse, N. S. Bowden, P. Oxley, A. Speck, C. H. Storry, J. N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T. W. Hänsch, and E. A. Hessels, Phys. Rev. Lett. 89, 213401 (2002).

    Google Scholar 

  13. B. R. Beck, J. Fajans, and J. H. Malmberg, Phys. Rev. Lett. 68, 317 (1992).

    Article  ADS  Google Scholar 

  14. C. Thompson and R. C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995).

    ADS  Google Scholar 

  15. G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1969; Mir, Moscow, 1971).

    Google Scholar 

  16. Yu. N. Gnedin and G. G. Pavlov, Zh. Éksp. Teor. Fiz. 65(5), 1806 (1973) [Sov. Phys. JETP 38 (5), 903 (1973)].

    ADS  Google Scholar 

  17. G. G. Pavlov and A. N. Panov, Zh. Éksp. Teor. Fiz. 71(2), 572 (1976) [Sov. Phys. JETP 44 (2), 300 (1976)].

    Google Scholar 

  18. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

    Google Scholar 

  19. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 2000; Fizmatlit, Moscow, 2003).

    Google Scholar 

  21. V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971), Chapter 10 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koryagin.

Additional information

Original Russian Text © I.I. Bubukina, S.A. Koryagin, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 6, pp. 1056–1067

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubukina, I.I., Koryagin, S.A. Bremsstrahlung from collisions of low-energy electrons with positive ions in a magnetic field. J. Exp. Theor. Phys. 108, 917–927 (2009). https://doi.org/10.1134/S1063776109060028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109060028

PACS numbers

Navigation