Skip to main content
Log in

Model of superdiffusion

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A locally nonequilibrium model of superdiffusion is proposed that is based on the partition of the set of diffusing particles into groups according to the flight length of these particles. The process of diffusion is described in terms of partial concentrations of particles belonging to different groups. As special limit cases, the model yields equations with fractional time derivative and the so-called porous medium equation. The basic equations of the model are Markov equations; therefore, they easily include reaction terms. The model can be applied to describing the types of diffusion in which the diffusing particles are in free flight most of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. B. Uchaĭkin, Usp. Fiz. Nauk 173(8), 847 (2003) [Phys.—Usp. 46 (8), 821 (2003)].

    Article  Google Scholar 

  5. C. Tsallis and D. J. Bukman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, R2197 (1996).

    Google Scholar 

  6. A. I. Saichev and S. G. Utkin, Zh. Éksp. Teor. Fiz. 126(2), 502 (2004) [JETP 99 (2), 443 (2004)].

    Google Scholar 

  7. I. A. Dranikov, P. S. Kondratenko, and A. V. Matveev, Zh. Éksp. Teor. Fiz. 125(5), 1085 (2004) [JETP 98 (5), 945 (2004)].

    Google Scholar 

  8. A. M. Dykhne, P. S. Kondratenko, and A. V. Matveev, Pis’ma Zh. Éksp. Teor. Fiz. 80(6), 464 (2004) [JETP Lett. 80 (6), 410 (2004)].

    Google Scholar 

  9. I. M. Sokolov and R. Metzler, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 010101(R) (2003).

  10. A. T. Silva, E. K. Lenzi, L. R. Evangelista, et al., Physica A (Amsterdam) 375, 65 (2007).

    ADS  MathSciNet  Google Scholar 

  11. V. P. Shkilev, Zh. Éksp. Teor. Fiz. 132(5), 1214 (2007) [JETP 105 (5), 1068 (2007)].

    Google Scholar 

  12. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, et al., Phys. Rev. B: Condens. Matter 73, 045326 (2006).

    Google Scholar 

  13. J. Bisquert, Phys. Rev. B: Condens. Matter 77, 235203 (2008).

    Google Scholar 

  14. J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A: At., Mol., Opt. Phys. 35, 3081 (1987).

    ADS  MathSciNet  Google Scholar 

  15. J. Toth, W. Rudzinski, A. Waskmundski, et al., Acta Chim. Acad. Sci. Hung. 82, 11 (1974).

    Google Scholar 

  16. P. Levitz, Europhys. Lett. 39, 593 (1997).

    Article  ADS  Google Scholar 

  17. A. J. Dammers and M.-O. Coppens, Diffus. Fundam. 2, 14.1 (2005).

    Google Scholar 

  18. S. Zschiegner, S. Russ, A. Bunde, et al., Diffus. Fundam. 7, 17.1 (2007).

    Google Scholar 

  19. A. Yadav and W. Horsthemke, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 066118 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shkilev.

Additional information

Original Russian Text © V.P. Shkilev, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 1040–1047.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shkilev, V.P. Model of superdiffusion. J. Exp. Theor. Phys. 107, 892–898 (2008). https://doi.org/10.1134/S1063776108110216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110216

PACS numbers

Navigation