Skip to main content
Log in

Fast High-Order Compact Finite Difference Methods Based on the Averaged L1 Formula for a Time-Fractional Mobile-Immobile Diffusion Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A two-dimensional time-fractional mobile-immobile diffusion problem with the Caputo time-fractional derivative of order \(\alpha \in (0,1)\) is considered. We show that the solution of the problem has a weak singularity at the initial time. Using the averaged L1 formula to approximate the Caputo time-fractional derivative and using a compact finite difference approximation to discretize the space derivatives, we propose a high-order averaged L1-type compact finite difference method on the uniform space-time mesh for the problem. We then base on this method to develop an averaged L1-type compact alternating direction implicit (ADI) finite difference method and a fast sum-of-exponentials compact ADI finite difference method, both of which significantly reduce the storage requirements and the computational costs while maintaining the same global convergence rate. By using the discrete energy analysis technique, we rigorously prove that all methods are unconditionally stable and convergent, and they have the spatial global fourth-order convergence rate and the temporal global convergence rate of order \(\min \{2, 3-2\alpha \}\). For the case of \(\alpha >1/2\), we use the discrete minimum-maximum principle to prove that the temporal second-order convergence rate can also be achieved in positive time. Numerical results confirm the theoretical analysis results and demonstrate the computational efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability and Materials

All data supporting the findings of this study are available within the article.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Benson, D.A., Meerschaert, M.M.: A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv. Water Resour. 32, 532–539 (2009)

    Article  Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1966)

    Google Scholar 

  4. Du, R.L., Sun, Z.Z., Wang, H.: Temporal second-order finite difference schemes for variable-order time-fractional wave equations. SIAM J. Numer. Anal. 60, 104–132 (2022)

    Article  MathSciNet  Google Scholar 

  5. Fu, H., Zhu, C., Liang, X., Zhang, B.: Efficient spatial second-/fourth-order finite difference ADI methods for multi-dimensional variable-order time-fractional diffusion equations. Adv. Comput. Math. 47, 58 (2021)

    Article  MathSciNet  Google Scholar 

  6. Jiang, H., Xu, D., Qiu, W., Zhou, J.: An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile-immobile equation. Comput. Appl. Math. 39, 287 (2020)

    Article  MathSciNet  Google Scholar 

  7. Goltz, M.N., Roberts, P.V.: Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour. Res. 23, 1575–1585 (1987)

    Article  Google Scholar 

  8. Hadid, S.B., Luchko, Y.: An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 6, 57–73 (1996)

    MathSciNet  Google Scholar 

  9. Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36, 3467–3479 (2000)

    Article  Google Scholar 

  10. Harvey, C., Gorelick, S.M.: Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resour. Res. 36, 637–650 (2000)

    Article  Google Scholar 

  11. Huang, C., Liu, X., Meng, X., Stynes, M.: Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Methods Appl. Math. 20, 815–825 (2020)

    Article  MathSciNet  Google Scholar 

  12. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications Inc, New York (1994)

    Google Scholar 

  13. Ji, B., Liao, H., Gong, Y., Zhang, L.: Adaptive second-order Crank-Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 42, B738–B760 (2020)

    Article  MathSciNet  Google Scholar 

  14. Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  16. Le, K., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker-Planck equation with general forcing. SIAM J. Numer. Anal. 54, 1763–1784 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, J.-R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  19. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)

    MathSciNet  Google Scholar 

  20. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  Google Scholar 

  22. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  Google Scholar 

  23. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)

    Article  MathSciNet  Google Scholar 

  24. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    Article  MathSciNet  Google Scholar 

  25. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam 24, 207–233 (1999)

    MathSciNet  Google Scholar 

  26. Ma, F., Zhao, L., Deng, W., Wang, Y.: Analyses of the contour integral method for time fractional normal-subdiffusion transport equation. J. Sci. Comput. 97, 45 (2023)

    Article  MathSciNet  Google Scholar 

  27. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2019)

    Book  Google Scholar 

  28. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)

    Article  MathSciNet  Google Scholar 

  29. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  30. Mustapha, K.: An implicit finite difference time-stepping method for a subdiffusion equation with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  Google Scholar 

  31. Mustapha, K.: An \(L1\) approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes. SIAM J. Numer. Anal. 58, 1319–1338 (2020)

    Article  MathSciNet  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  33. Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithms 85, 39–58 (2020)

    Article  MathSciNet  Google Scholar 

  34. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  35. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)

    Google Scholar 

  36. Schumer, R., Benson, D., Meerschaert, M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1–12 (2003)

    Article  Google Scholar 

  37. Shen, J., Zeng, F., Stynes, M.: Second-order error analysis of the averaged L1 scheme \(\overline{\text{ L1 }}\) for time-fractional initial-value and subdiffusion problems. Sci. China Math. 66, 1–24 (2023). https://doi.org/10.1007/s11425-022-2078-4

    Article  Google Scholar 

  38. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  39. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  Google Scholar 

  40. Sun, H., Zhao, X., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78, 467–498 (2019)

    Article  MathSciNet  Google Scholar 

  41. Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker, INC., New York (1971)

    Google Scholar 

  42. Wang, Y.-M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wang, Y.-M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection-diffusion equations. Calcolo 54, 733–768 (2017)

    Article  MathSciNet  Google Scholar 

  44. Wang, Y.-M.: Error analysis of a compact finite difference method for fourth-order nonlinear elliptic boundary value problems. Appl. Numer. Math. 120, 53–67 (2017)

    Article  MathSciNet  Google Scholar 

  45. Wang, Y.-M., Ren, L.: Efficient compact finite difference methods for a class of time-fractional convection-reaction-diffusion equations with variable coefficients. Inter. J. Comput. Math. 96, 264–297 (2019)

    Article  MathSciNet  Google Scholar 

  46. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  Google Scholar 

  47. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  48. Yu, F., Chen, M.: Second-order error analysis for fractal mobile/immobile Allen-Cahn equation on graded meshes. J. Sci. Comput. 96, 49 (2023)

    Article  MathSciNet  Google Scholar 

  49. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  50. Zhang, Y., Green, C., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

    Article  Google Scholar 

  51. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  Google Scholar 

  52. Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E 78, 036705 (2008)

    Article  Google Scholar 

  53. Zhao, L., Deng, W.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)

    Article  MathSciNet  Google Scholar 

  54. Zhao, M., Wang, H.: Fast finite difference methods for space-time fractional partial differential equations in three space dimensions with nonlocal boundary conditions. Appl. Numer. Math. 145, 411–428 (2019)

    Article  MathSciNet  Google Scholar 

  55. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    Article  MathSciNet  Google Scholar 

  56. Zheng, Z.-Y., Wang, Y.-M.: An averaged \(L1\)-type compact difference method for time-fractional mobile/immobile diffusion equations with weakly singular solutions. Appl. Math. Lett. 131, 108076 (2022)

    Article  MathSciNet  Google Scholar 

  57. Zhokh, A., Strizhak, P.: Non-Fickian diffusion of methanol in mesoporous media: geometrical restrictions or adsorption-induced? J. Chem. Phys. 146, 124704 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Funding

This work was supported in part by National Key R &D Program of China (No. 2022YFA1004402), and Science and Technology Commission of Shanghai Municipality (STCSM) (Nos. 22DZ2229014 and 21JC1402500).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, analysis and numerical computation were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuan-Ming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Key R &D Program of China (No. 2022YFA1004402), and Science and Technology Commission of Shanghai Municipality (STCSM) (No. 22DZ2229014 and No. 21JC1402500).

A Appendix: Proof of Theorem 11

A Appendix: Proof of Theorem 11

Proof

When the spatial mesh is isotropic, that is, \(h_{x}=h_{y}=h\), the operators \({{\mathcal {H}}}\) and \({{\mathcal {Q}}}\) can be written as

$$\begin{aligned} {{\mathcal {H}}}z_{i,j}=\sum _{k_{1}, k_{2}=-1}^{1} p_{i,j}^{(k_{1}, k_{2})} z_{i+k_{1}, j+k_{2}},\qquad {{\mathcal {Q}}}z_{i,j}=\frac{1}{h^{2}} \sum _{k_{1}, k_{2}=-1}^{1} q_{i,j}^{(k_{1}, k_{2})} z_{i+k_{1}, j+k_{2}}, \end{aligned}$$
(118)

where

$$\begin{aligned}{} & {} p_{i,j}^{(\pm 1,\pm 1)}=\frac{1}{144}, \qquad p_{i,j}^{(\pm 1,0)}=p_{i,j}^{(0,\pm 1)}=\frac{5}{72}, \qquad p_{i,j}^{(0,0)}=\frac{25}{36},\\{} & {} q_{i,j}^{(\pm 1,\pm 1)}=\frac{1}{6},\qquad \quad q_{i,j}^{(\pm 1,0)}=q_{i,j}^{(0,\pm 1)}=\frac{2}{3}, \qquad ~~ q_{i,j}^{(0,0)}=-\frac{10}{3}. \end{aligned}$$

Then we can write (58a) in the form:

$$\begin{aligned}{} & {} \left( \frac{\omega _{1,1}^{*}}{\tau }p_{i,j}^{(0,0)}- \frac{\kappa }{2h^{2}} q_{i,j}^{(0,0)}\right) u_{i,j}^{1}=\sum _{{k_{1}, k_{2}=-1}\begin{array}{c} (k_{1},k_{2})\not =(0,0) \end{array}}^{1}\left( \frac{\kappa }{2h^{2}}q_{i,j}^{(k_{1},k_{2})}- \frac{\omega _{1,1}^{*}}{\tau }p_{i,j}^{(k_{1},k_{2})} \right) u_{i+k_{1}, j+k_{2}}^{1}\nonumber \\{} & {} ~~~~~~~~~~~~+\sum _{{k_{1}, k_{2}=-1}}^{1}\left( \frac{\omega _{1,1}^{*}}{\tau }p_{i,j}^{(k_{1},k_{2})}+ \frac{\kappa }{2h^{2}}q_{i,j}^{(k_{1},k_{2})} \right) u_{i+k_{1}, j+k_{2}}^{0}+{{\mathcal {H}}}g_{i,j}^{1}, \qquad (i,j)\in \Omega _{h}, \end{aligned}$$
(119)

and for \(2\le n\le N\),

$$\begin{aligned}{} & {} \left( \frac{\omega _{n,n}^{*}}{\tau }p_{i,j}^{(0,0)}- \frac{\kappa }{2h^{2}} q_{i,j}^{(0,0)}\right) u_{i,j}^{n}=\sum _{{k_{1}, k_{2}=-1}\begin{array}{c} (k_{1},k_{2}) \not =(0,0) \end{array}}^{1}\left( \frac{\kappa }{2h^{2}}q_{i,j}^{(k_{1},k_{2})}- \frac{\omega _{n,n}^{*}}{\tau }p_{i,j}^{(k_{1},k_{2})} \right) u_{i+k_{1}, j+k_{2}}^{n}\nonumber \\{} & {} ~~~~+\sum _{{k_{1}, k_{2}=-1}}^{1}\left( \frac{\omega _{n,n}^{*} -\omega _{n,n-1}^{*}}{\tau }p_{i,j}^{(k_{1},k_{2})}+ \frac{\kappa }{2h^{2}}q_{i,j}^{(k_{1},k_{2})} \right) u_{i+k_{1}, j+k_{2}}^{n-1}+\zeta _{i,j}^{n}, \qquad (i,j)\in \Omega _{h},\nonumber \\ \end{aligned}$$
(120)

where

$$\begin{aligned}{} & {} \zeta _{i,j}^{n}=\frac{1}{\tau } \sum _{k=1}^{n-2} \left( \omega _{n,k+1}^{*} -\omega _{n,k}^{*}\right) \sum _{{k_{1}, k_{2}=-1}}^{1}p_{i,j}^{(k_{1},k_{2})} u_{i+k_{1}, j+k_{2}}^{k}\nonumber \\{} & {} ~~~~~~~~~~~~~~~~+\frac{1}{\tau } \omega _{n,1}^{*} \sum _{{k_{1}, k_{2}=-1}}^{1}p_{i,j}^{(k_{1},k_{2})} u_{i+k_{1}, j+k_{2}}^{0}+\mathcal{H}g_{i,j}^{n}. \end{aligned}$$
(121)

When the mesh conditions (98) and (99) are satisfied, \(\omega _{n,k+1}^{*}> \omega _{n,k}^{*}\) for \(1\le k\le n-1\) (see (40)) and all coefficients of the terms on the right-hand side of (119) and (120) are nonnegative. We also observe that \(\sum _{k_{1}, k_{2}=-1}^{1}p_{i,j}^{(k_{1},k_{2})}=1\) and \(\sum _{k_{1}, k_{2}=-1}^{1}q_{i,j}^{(k_{1},k_{2})}=0\) for all \((i,j)\in \Omega _{h}\).

Now suppose that \(u_{i,j}^{1}\) attains its maximum in \(\overline{\Omega }_{h}\) at \((i_{0}, j_{0})\in \Omega _{h}\). Then we have from (119) that

$$\begin{aligned} \left( \frac{\omega _{1,1}^{*}}{\tau }p_{i_{0},j_{0}}^{(0,0)}- \frac{\kappa }{2h^{2}} q_{i_{0},j_{0}}^{(0,0)}\right) u_{i_{0},j_{0}}^{1}\le & {} \left( \frac{\omega _{1,1}^{*}}{\tau }p_{i_{0},j_{0}}^{(0,0)}- \frac{\kappa }{2h^{2}} q_{i_{0},j_{0}}^{(0,0)}-\frac{1}{\tau } \omega _{1,1}^{*}\right) u_{i_{0},j_{0}}^{1}\nonumber \\{} & {} +\frac{1}{\tau } \omega _{1,1}^{*} \Theta _{\max }^{1}.~~~~~~ \end{aligned}$$
(122)

This shows \(u_{i_{0},j_{0}}^{1}\le \Theta _{\max }^{1}\). Since \(u_{i,j}^{1}=0\) for all \((i,j)\in \partial \Omega _{h}\), we obtain \(u_{i,j}^{1}\le \Theta _{\max }^{1}\) for all \((i,j)\in \overline{\Omega }_{h}\). An identical argument shows \(u_{i,j}^{1}\ge \Theta _{\min }^{1}\) for all \((i,j)\in \overline{\Omega }_{h}\). Assume, by induction, that \(\Theta _{\min }^{n}\le u_{i,j}^{n}\le \Theta _{\max }^{n}\) for all \((i,j)\in \overline{\Omega }_{h}\) and \(1\le n\le n_{0}-1\) \((n_{0}\ge 2)\). Suppose that \(u_{i,j}^{n_{0}}\) attains its maximum in \(\overline{\Omega }_{h}\) at \((i_{0}, j_{0})\in \Omega _{h}\). Then we use (120) and the inductive hypothesis to get a similar inequality (122), where subscript or superscript 1 is replaced by \(n_{0}\). By this inequality, we deduce \(u_{i_{0},j_{0}}^{n_{0}}\le \Theta _{\max }^{n_{0}}\) which implies \(u_{i,j}^{n_{0}}\le \Theta _{\max }^{n_{0}}\) for all \((i,j)\in \overline{\Omega }_{h}\) because \(u_{i,j}^{n_{0}}=0\) for all \((i,j)\in \partial \Omega _{h}\). The same argument can be applied to prove \(u_{i,j}^{n_{0}}\ge \Theta _{\min }^{n_{0}}\) for all \((i,j)\in \overline{\Omega }_{h}\). The principle of mathematical induction completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, ZY., Wang, YM. Fast High-Order Compact Finite Difference Methods Based on the Averaged L1 Formula for a Time-Fractional Mobile-Immobile Diffusion Problem. J Sci Comput 99, 43 (2024). https://doi.org/10.1007/s10915-024-02505-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02505-5

Keywords

Mathematics Subject Classification

Navigation