Skip to main content
Log in

Modeling of the shape of polyethylene oxide single crystals and determination of the kinetic crystallization parameters: Theoretical and experimental approaches

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The curvature of faces of polymer single crystals is described by the system of Mansfield equations, which is based on the Frank-Seto growth model. This model assumes the velocity of nucleus steps to be the same for their propagation to the right and left and is valid only for symmetric crystallographic planes. To describe the shape of polyethylene oxide single crystals grown from melt and limited by the {100} and {120} folding planes, it is assumed that the layer velocities to the right and left are different on {120} faces. This approach allows modeling, with a high accuracy, of the observed shapes of polymer single crystals grown at different temperatures, which makes it possible to determine unambiguously the fundamental crystallization parameters: the dimensionless ratio of the secondary homogeneous nucleation rate to the average velocities of nuclei along the crystallization planes and the ratio of nucleus velocities to the right and left. In addition, it was found that a known macroscopic single-crystal growth rate can be used to determine the absolute values of the secondary homogeneous nucleation rate and the velocities of nuclei along the growth plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Keith, J. Appl. Phys. 35, 3115 (1964).

    Article  ADS  Google Scholar 

  2. F. Khoury, Faraday Discuss. Chem. Soc. 68, 404 (1979).

    Google Scholar 

  3. A. Toda, Faraday Discuss. Chem. Soc. 95, 129 (1993).

    Article  ADS  Google Scholar 

  4. A. J. Kovacs and A. Gonthier, Kolloid ZZ Polym. 250, 530 (1972).

    Article  Google Scholar 

  5. A. J. Kovacs, A. Gonthier, and C. Straupe, J. Polym. Sci. Polym. Symp. 50, 283 (1975).

    Article  Google Scholar 

  6. A. J. Kovacs, A. Gonthier, and C. Straupe, J. Polym. Sci. Polym. Symp. 59, 31 (1977).

    Article  Google Scholar 

  7. S. Z. D. Cheng and J. Chen, J. Polym. Sci. B: Polym. Phys. 29, 311 (1991).

    Article  ADS  Google Scholar 

  8. L. G. M. Beekmans and G. J. Vancso, Polymer 41, 8975 (2000).

    Article  Google Scholar 

  9. S. J. Organ, A. Keller, M. Hikosaka, and G. Ungar, Polymer 37, 2517 (1996).

    Article  Google Scholar 

  10. G. Ungar, P. K. Mandal, P. G. Higgs, et al., Phys. Rev. Lett. 85, 4397 (2000).

    Article  ADS  Google Scholar 

  11. G. Ungar and E. G. R. Putra, Macromolecules 34, 5180 (2001).

    Article  ADS  Google Scholar 

  12. E. G. R. Putra and G. Ungar, Macromolecules 36, 3812 (2003).

    Article  ADS  Google Scholar 

  13. E. G. R. Putra and G. Ungar, Macromolecules 36, 5214 (2003).

    Article  ADS  Google Scholar 

  14. A. Toda, T. Arita, and M. Hikosaka, Polymer. 42, 2223 (2001).

    Article  Google Scholar 

  15. D. M. Sadler, Polymer 24, 1401 (1983).

    Article  Google Scholar 

  16. D. M. Sadler and G. H. Gilmer, Polym. Commun. 28, 243 (1987).

    Google Scholar 

  17. A. Toda, Polymer 32, 771 (1991).

    Article  Google Scholar 

  18. M. L. Mansfield, Polymer 29, 1755 (1988).

    Article  Google Scholar 

  19. J. J. Point and D. Villers, J. Cryst. Growth 114, 228 (1991).

    Article  ADS  Google Scholar 

  20. F. C. Frank, J. Cryst. Growth 22, 233 (1974).

    Article  ADS  Google Scholar 

  21. T. Seto, Rep. Prog. Polym. Phys. Jpn. 7, 67 (1964).

    Google Scholar 

  22. G. Ungar, E. G. R. Putra, D. S. M. de Silva, et al., Adv. Polym. Sci. 180, 45 (2005).

    Article  Google Scholar 

  23. M. A. Shcherbina and G. Ungar, Polymer 47, 5505 (2006).

    Article  Google Scholar 

  24. M. A. Shcherbina and G. Ungar, Polymer 48, 2087 (2007).

    Article  Google Scholar 

  25. C. P. Buckley and A. J. Kovacs, Structure of Crystalline Polymers (Hall IH Ed Elsevier-Applied Science, London, 1984), p. 261.

    Google Scholar 

  26. B. Lotz, A. J. Kovacs, G. A. Bassett, and A. Keller, Kolloid ZZ Polym. 209, 115 (1966).

    Article  Google Scholar 

  27. Y. Takahashi and H. Tadokoro, Macromolecules 6, 672 (1973).

    Article  ADS  Google Scholar 

  28. C. P. Buckley and A. J. Kovacs, Progr. Colloid Polym. Sci. 58, 44 (1975).

    Article  Google Scholar 

  29. M. A. Shcherbina, S. N. Chvalun, and G. Ungar, Crystallogr. Rep. 52(4), 707 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shcherbina.

Additional information

Original Russian Text © M.A. Shcherbina, S.N. Chvalun, G. Ungar, 2012, published in Kristallografiya, 2012, Vol. 57, No. 6, pp. 975–983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbina, M.A., Chvalun, S.N. & Ungar, G. Modeling of the shape of polyethylene oxide single crystals and determination of the kinetic crystallization parameters: Theoretical and experimental approaches. Crystallogr. Rep. 57, 860–868 (2012). https://doi.org/10.1134/S1063774512060132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512060132

Keywords

Navigation