Skip to main content
Log in

Effect of Magnetic Field Diffusion on the Structure of Extended Envelopes of Hot Jupiters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The paper presents a modification of the numerical MHD model of extended envelopes of hot Jupiters, in which the magnetic viscosity is considered. In the new version of the numerical model, we included the processes of magnetic field diffusion due to the ohmic (turbulent) viscosity, as well as the Bohm-type viscosity. In the region of the planet’s magnetosphere, Bohm diffusion can play a significant role in the vicinity of neutral points of the magnetic field and near current sheets. The magnetic field diffusion equation is solved using an implicit absolutely stable scheme. The structure of a quasi-open super-Alfvén envelope for a typical hot Jupiter HD 209458b was calculated with and without magnetic viscosity. An analysis of the calculation results leads to the conclusion that, at short times on the order of the orbital period, diffusion effects are insignificant. However, in the quasi-stationary envelope of a hot Jupiter, magnetic field diffusion will effectively work for longer times on the order of several orbital periods. In addition, the effectiveness of Bohm diffusion can increase significantly even at short times in spatial regions of sufficiently small size. In the calculations presented, the physical diffusion of the magnetic field turns out to be comparable with the effect of numerical diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  2. M. Mayor and D. Queloz, Nature (London, U.K.) 378, 355 (1995).

    Article  ADS  Google Scholar 

  3. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  4. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature (London, U.K.) 463, 1054 (2010).

    Article  ADS  Google Scholar 

  5. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature (London, U.K.) 422, 143 (2003).

    Article  ADS  Google Scholar 

  6. A. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  7. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    Article  ADS  Google Scholar 

  8. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  9. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  10. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  11. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, H. Dupuy, et al., Astron. Astrophys. 543, L4 (2012).

    Article  ADS  Google Scholar 

  12. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  13. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  14. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  15. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    Article  ADS  Google Scholar 

  16. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Phys. Usp. 64, 747 (2021).

    Article  ADS  Google Scholar 

  17. D. V. Bisikalo, V. I. Shematovich, P. V. Kaigorodov, and A. G. Zhilkin, Gaseous Envelopes of Exoplanets— Hot Jupiters (Nauka, Moscow, 2020) [in Russian].

    Google Scholar 

  18. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  20. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    Article  ADS  Google Scholar 

  21. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).

    Article  ADS  Google Scholar 

  22. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    Article  ADS  Google Scholar 

  23. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 62, 648 (2018).

    Article  ADS  Google Scholar 

  24. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).

    Article  ADS  Google Scholar 

  25. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 847, 126 (2017).

    Article  ADS  Google Scholar 

  26. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 481, 5315 (2018).

    Article  ADS  Google Scholar 

  27. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).

    Article  ADS  Google Scholar 

  28. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 491, 3435 (2020).

    ADS  Google Scholar 

  29. J.-M. Grießmeier, A. Stadelmann, T. Penz, H. Lammer, et al., Astron. Astrophys. 425, 753 (2004).

    Article  ADS  Google Scholar 

  30. A. Sanchez-Lavega, Astrophys. J. 609, L87 (2004).

    Article  ADS  Google Scholar 

  31. A. A. Vidotto, M. Jardine, and Ch. Helling, Mon. Not. R. Astron. Soc. 411, L46 (2011).

    Article  ADS  Google Scholar 

  32. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science (Washington, DC, U. S.) 346, 981 (2014).

    Article  ADS  Google Scholar 

  33. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

  34. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    Article  ADS  Google Scholar 

  35. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).

    Article  ADS  Google Scholar 

  36. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).

    Article  ADS  Google Scholar 

  37. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, 152 (2011).

    Article  ADS  Google Scholar 

  38. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).

    Article  ADS  Google Scholar 

  39. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).

    Article  ADS  Google Scholar 

  40. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, 161 (2014).

    Article  ADS  Google Scholar 

  41. T. Matsakos, A. Uribe, and A. Königl, Astron. Astrophys. 578, A6 (2015).

    Article  ADS  Google Scholar 

  42. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    Article  ADS  Google Scholar 

  43. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).

    Article  ADS  Google Scholar 

  44. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 159 (2020).

    Article  ADS  Google Scholar 

  45. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 259 (2020).

    Article  ADS  Google Scholar 

  46. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64, 563 (2020).

    Article  ADS  Google Scholar 

  47. A. G. Zhilkin, D. V. Bisikalo, and E. A. Kolymagina, Astron. Rep. 65, 676 (2021).

    Article  ADS  Google Scholar 

  48. A. G. Zhilkin and D. V. Bisikalo, Universe 7, 422 (2021).

    Article  ADS  Google Scholar 

  49. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Phys. 10, 5 (2013).

    ADS  Google Scholar 

  50. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Cham, 2016).

    Book  Google Scholar 

  51. E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).

    Article  ADS  Google Scholar 

  52. L. Mestel and L. Spitzer, Jr., Mon. Not. R. Astron. Soc. 116, 503 (1956).

    Article  ADS  Google Scholar 

  53. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  54. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  55. T. Tanaka, J. Comput. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  56. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  57. E. N. Parker, Astrophys. J. 128, 664 (1958).

    Article  ADS  Google Scholar 

  58. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).

    Article  ADS  Google Scholar 

  59. A. A. Samarskii, The Theory of Differential Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

  60. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Berlin, 1989).

Download references

ACKNOWLEDGMENTS

This work was carried out using the computing facilities of the Joint Supercomputing Center of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 22-12-00364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Appendix

Appendix

1.1 DIFFERENCE SCHEME FOR THE EQUATION OF MAGNETIC FIELD DIFFUSION

The equation describing magnetic field diffusion can be written as follows:

$$\frac{{\partial {\mathbf{b}}}}{{\partial t}} = - \nabla \times \left( {\eta {\kern 1pt} \nabla \times {\mathbf{b}}} \right).$$
(A.1)

In Cartesian coordinates, this equation can be conveniently rewritten as

$$\frac{{\partial {\mathbf{b}}}}{{\partial t}} = \frac{\partial }{{\partial {{x}^{k}}}}\left( {\eta \frac{{\partial {\mathbf{b}}}}{{\partial {{x}^{k}}}}} \right) - \frac{{\partial \eta }}{{\partial {{x}^{k}}}}\nabla {{b}_{k}},$$
(A.2)

where the summation over the index \(k\) from 1 to 3 is assumed. Since the diffusion coefficient \(\eta \) depends, generally speaking, on the magnitude of the magnetic field, the use of explicit schemes for solving Eq. (A.2) leads to too strong restrictions on the time step. Therefore, to approximate this equation on an interval \({{t}^{n}} \leqslant \Delta t \leqslant {{t}^{{n + 1}}}\), our numerical code uses the absolutely stable completely implicit scheme [59]

$$\frac{{{{{\mathbf{b}}}^{{n + 1}}} - {{{\mathbf{b}}}^{n}}}}{{\Delta t}} = {{\hat {D}}^{{n + 1}}}{{{\mathbf{b}}}^{{n + 1}}} - {{{\mathbf{R}}}^{{n + 1}}}.$$
(A.3)

Here, the diffusion operator \(\hat {D}\) approximates the first term on the right side of (A.2) and \({\mathbf{R}}\) approximates the source term.

The diffusion operator and the source term can be conveniently split into spatial directions:

$$\hat {D} = {{\hat {D}}_{x}} + {{\hat {D}}_{y}} + {{\hat {D}}_{z}},\quad {\mathbf{R}} = {{{\mathbf{R}}}_{x}} + {{{\mathbf{R}}}_{y}} + {{{\mathbf{R}}}_{z}},$$
(A.4)

where, for example, the operator \({{\hat {D}}_{x}}\) approximates the expression \(\partial {\text{/}}\partial x(\eta \partial {\mathbf{b}}{\text{/}}\partial x)\) and \({{{\mathbf{R}}}_{x}}\) approximates the expression \((\partial \eta {\text{/}}\partial x)\nabla {{b}_{x}}\). To implement scheme (A.3), we organize an iterative process

$$\frac{{{{{\mathbf{b}}}^{{(p + 1/3)}}} - {{{\mathbf{b}}}^{n}}}}{{\Delta t}} = {{\hat {D}}^{{(p)}}}{{{\mathbf{b}}}^{{(p + 1/3)}}} - {\mathbf{R}}_{x}^{{(p)}},$$
(A.5)
$$\frac{{{{{\mathbf{b}}}^{{(p + 2/3)}}} - {{{\mathbf{b}}}^{{(p + 1/3)}}}}}{{\Delta t}} = {{\hat {D}}^{{(p)}}}{{{\mathbf{b}}}^{{(p + 2/3)}}} - {\mathbf{R}}_{y}^{{(p)}},$$
(A.6)
$$\frac{{{{{\mathbf{b}}}^{{(p + 1)}}} - {{{\mathbf{b}}}^{{(p + 2/3)}}}}}{{\Delta t}} = {{\hat {D}}^{{(p)}}}{{{\mathbf{b}}}^{{(p + 1)}}} - {\mathbf{R}}_{z}^{{(p)}},$$
(A.7)

where \(p\) is the iteration number. In this case, we assume that \({{{\mathbf{b}}}^{{(0)}}} = {{{\mathbf{b}}}^{n}}\) and, in the limit at \(p \to \infty \), the process converges to the sought solution, \({{{\mathbf{b}}}^{{(p)}}} \to {{{\mathbf{b}}}^{{n + 1}}}\). The convergence of the process is determined by the condition

$$\left\| {{{{\mathbf{b}}}^{{(p + 1)}}} - {{{\mathbf{b}}}^{{(p)}}}} \right\| \leqslant {{\varepsilon }_{1}}\left\| {{{{\vec {b}}}^{{(p)}}}} \right\| + {{\varepsilon }_{2}},$$
(A.8)

where \({{\varepsilon }_{1}}\) and \({{\varepsilon }_{2}}\) are convergence parameters.

The calculation of the magnetic field value on a new iterative layer \(p + 1\) from the known value on the layer \(p\) consists of three stages. At the first stage, we obtain the value \({{{\mathbf{b}}}^{{(p + 1/3)}}}\); then, from this value, we find \({{{\mathbf{b}}}^{{(p + 2/3)}}}\); and, finally, we obtain \({{{\mathbf{b}}}^{{(p + 1)}}}\). At each stage, we have a difference scheme of the form

$$\frac{{{{{\mathbf{b}}}_{C}} - {\mathbf{b}}_{C}^{0}}}{{\Delta t}} = \frac{1}{{{{h}_{C}}}}\left( {{{\eta }_{2}}\frac{{{{{\mathbf{b}}}_{R}} - {{{\mathbf{b}}}_{C}}}}{{{{h}_{2}}}} - {{\eta }_{1}}\frac{{{{{\mathbf{b}}}_{C}} - {{{\mathbf{b}}}_{L}}}}{{{{h}_{1}}}}} \right) - {{{\mathbf{R}}}_{C}},$$
(A.9)

where the indices \(L\), \(C\), and \(R\) define three adjacent cells of the computational grid in a given coordinate direction and the corresponding nodes are denoted 1 (between cells \(L\) and \(C\)) and 2 (between cells \(C\) and \(R\)). The size of the cell \(C\) is denoted \({{h}_{C}}\), and the distances between the corresponding centers of the cells are denoted \({{h}_{1}}\) and \({{h}_{2}}\). This scheme can be rewritten as follows:

$$ - {{a}_{1}}{{{\mathbf{b}}}_{L}} + ({{d}_{1}} + {{a}_{1}} + {{a}_{2}}){{{\mathbf{b}}}_{C}} - {{a}_{2}}{{{\mathbf{b}}}_{R}} = {{{\mathbf{f}}}_{1}},$$
(A.10)

where the coefficients are

$${{a}_{{1,2}}} = \frac{{\Delta t{\kern 1pt} {{\eta }_{{1,2}}}}}{{{{h}_{{1,2}}}}},\quad {{d}_{1}} = {{h}_{C}},\quad {{{\mathbf{f}}}_{1}} = {{h}_{C}}({{{\mathbf{b}}}^{0}} - \Delta t{{{\mathbf{R}}}_{C}}).$$
(A.11)

Thus, the systems of linear algebraic equations that arise in the implementation of the scheme can be solved by the tridiagonal scalar algorithm in each spatial direction. In this case, we use the stream version of the algorithm [60]. The stream tridiagonal algorithm gives a more accurate solution in the case of stiff diffusion problems, when the diffusion coefficient in the computational domain varies over a wide range. Therefore, when considering, e.g., Bohm diffusion of the magnetic field, this version of the tridiagonal algorithm seems to be preferable. The described scheme is implicit, absolutely stable, and satisfies the positivity condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. Effect of Magnetic Field Diffusion on the Structure of Extended Envelopes of Hot Jupiters. Astron. Rep. 66, 1008–1016 (2022). https://doi.org/10.1134/S1063772922110208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922110208

Keywords:

Navigation