Skip to main content

Modeling the Interior Dynamics of Gas Planets

  • Chapter
Magnetic Fields in the Solar System

Abstract

With NASA’s Juno mission having arrived at its target and ESA’s JUICE mission in planning, the interest in state-of-the-art models for the interior structure and dynamics of Jupiter is increasing. This chapter reports on the related attempts within the Special Priority Program PlanetMag of the German Science Foundation and provides an up-to-date review of the topic. Refined interior models are discussed that are based on new ab initio calculations for the equations of state for hydrogen and helium. For the first time, the depth-dependent transport properties have also been calculated, most notably an electrical conductivity profile that captures the transition from the molecular outer to the metallic inner hydrogen-rich envelopes. Anelastic simulations of convection show that the strong density stratification causes flow amplitudes to increase with radius while the flow scale decreases. Zonal jet systems very similar to those observed on Jupiter or Saturn are found in simulations of the molecular hydrogen envelope. Dynamo simulations that include the whole gaseous envelope show strikingly Jupiter-like magnetic field configurations when the strong density stratification is combined with an electrical conductivity profile that includes the significant drop in the molecular layer. While the dipole-dominated large-scale field is produced at depth, the equatorial jet can give rise to a secondary dynamo process where it reaches down to regions of sizable electrical conductivity. The magnetic surface signatures of this secondary dynamo are banded but also have more localized wave number m = 1 and m = 2 concentrations at lower latitudes. By detecting these features, the Juno mission should be able to constrain the deep dynamics of the equatorial jet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  • Aubert, J., Aurnou, J., Wicht, J.: The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945 (2008)

    ADS  Google Scholar 

  • Aurnou, J., Heimpel, M., Wicht, J.: The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110 (2007)

    ADS  Google Scholar 

  • Ballot, J., Brun, A.S., Turck-Chièze, S.: Simulations of turbulent convection in rotating young solarlike stars: differential rotation and meridional circulation. Astrophys. J. 669, 1190 (2007)

    ADS  Google Scholar 

  • Bassom, A.P., Kuzanyan, K.M., Sokoloff, D., Soward, A.M.: Non-axisymmetric α2Ω-dynamo waves in thin stellar shells. Geophys. Astrophys. Fluid Dyn. 99, 309 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Becker, A., Lorenzen, W., Fortney, J.J., Nettelmann, N., Schöttler, M., Redmer, R.: Ab initio equations of state for hydrogen (H-REOS.3) and helium (HE-REOS.3) and their implications for the interior of brown dwarfs. Astrophys. J. Suppl. Ser. 215, 14 (2014)

    ADS  Google Scholar 

  • Bessolaz, N., Brun, A.S.: Hunting for giant cells in deep stellar convective zones using wavelet analysis. Astrophys. J. 728, 115 (2011)

    ADS  Google Scholar 

  • Braginsky, S.I., Roberts, P.H.: Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1 (1995)

    ADS  Google Scholar 

  • Brown, B.P.: Convection and dynamo action in rapidly rotating suns. Ph.D. thesis, University of Colorado (2009)

    Google Scholar 

  • Browning, M.K.: Simulations of dynamo action in fully convective stars. Astrophys. J. 676, 1262 (2008)

    ADS  Google Scholar 

  • Brun, A.S., Palacios, A.: Numerical simulations of a rotating red giant star. I. Three-dimensional models of turbulent convection and associated mean flows. Astrophys. J. 702, 1078 (2009)

    ADS  Google Scholar 

  • Busse, F.H.: Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441 (1970)

    ADS  MATH  Google Scholar 

  • Busse, F.H.: Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 1301 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Busse, F.H., Simitev, R.D.: Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 100, 341 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Busse, F.H., Simitev, R.D.: Quasi-geostrophic approximation of anelastic convection. J. Fluid Mech. 751, 216 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Caillabet, L., Mazevet, S., Loubeyre, P.: Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV. Phys. Rev. B 83, 094101 (2011)

    Google Scholar 

  • Cao, H., Russell, C.T., Wicht, J., Christensen, U.R., Dougherty, M.K.: Saturn’s high-degree magnetic moments: evidence for a unique planetary dynamo. Icarus 221, 388 (2012)

    ADS  Google Scholar 

  • Chabrier, G., Saumon, D., Hubbard, W.B., Lunine, J.I.: The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn. Astrophys. J. 391, 817 (1992)

    ADS  Google Scholar 

  • Chekhlov, A., Orszag, S.A., Sukoriansky, S., Galperin, B., Staroselsky, I.: The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D 98, 321 (1996)

    ADS  MATH  Google Scholar 

  • Christensen, U.R.: Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28, 2553 (2001)

    ADS  Google Scholar 

  • Christensen, U.R.: Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Christensen, U., Aubert, J.: Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys. J. Int. 116, 97 (2006)

    ADS  Google Scholar 

  • Christensen, U.R., Wicht, J.: Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196, 16 (2008)

    ADS  Google Scholar 

  • Christensen, U., Wicht, J.: Numerical dynamo simulations. In: Olson, P. (ed.) Core Dynamics. Treatise on Geophysics, vol. 8, p. 245. Elsevier, Amsterdam (2015)

    Google Scholar 

  • Connaughton, C., Nazarenko, S., Quinn, B.: Rossby and drift wave turbulence and zonal flows: the Charney-Hasegawa-Mima model and its extensions. Phys. Rep. 604, 1 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Connerney, J.E.P., Acuña, M.H., Ness, N.F., Satoh, T.: New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929 (1998)

    ADS  Google Scholar 

  • Danilov, S., Gryanik, V.M.: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci. 61, 2283 (2004)

    ADS  Google Scholar 

  • Desjarlais, M.P.: Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing. Phys. Rev. B 68, 064204 (2003)

    ADS  Google Scholar 

  • Desjarlais, M.P.: First-principles calculation of entropy for liquid metals. Phys. Rev. E 88, 062145 (2013)

    ADS  Google Scholar 

  • Dias, R.P., Silvera, I.F.: Observation of the Wigner-Huntington transition to metallic hydrogen. Science (2017). ISSN:0036-8075

    Google Scholar 

  • Dietrich, W., Gastine, T., Wicht, J.: Reversal and amplification of zonal flows by boundary enforced thermal wind. Icarus 282, 380 (2017)

    ADS  Google Scholar 

  • Dormy, E., Soward, A.M., Jones, C.A., Jault, D., Cardin, P.: The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 43 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  • Dreizler, R.M., Gross, E.K.U.: Density Functional Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  • Drew, S.J., Jones, C.A., Zhang, K.: Onset of convection in a rapidly rotating compressible fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 80, 241 (1995)

    ADS  Google Scholar 

  • Dritschel, D.G., McIntyre, M.E.: Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855 (2008)

    ADS  Google Scholar 

  • Duarte, L.D.V., Gastine, T., Wicht, J.: Anelastic dynamo models with variable electrical conductivity: an application to gas giants. Phys. Earth Planet. Inter. 222, 22 (2013)

    ADS  Google Scholar 

  • Duarte, L.D.V., Wicht, J., Gastine, T.: Physical properties for Jupiter-like dynamo models. Icarus 229, 206–221 (2018)

    ADS  Google Scholar 

  • Dubrovinsky, L., Dubrovinskaia, L.N., Prakapenka, V.B., Abakumov, A.M.: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012)

    ADS  Google Scholar 

  • Evonuk, M.: The role of density stratification in generating zonal flow structures in a rotating fluid. Astrophys. J. 673, 1154 (2008)

    ADS  Google Scholar 

  • Evonuk, M., Glatzmaier, G.A.: A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets. Icarus 181, 458 (2006)

    ADS  Google Scholar 

  • Evonuk, M., Samuel, H.: Simulating rotating fluid bodies: when is vorticity generation via density-stratification important? Earth Planet. Sci. Lett. 317, 1 (2012)

    ADS  Google Scholar 

  • Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340 (1939)

    ADS  MATH  Google Scholar 

  • Fortney, J.J., Hubbard, W.B.: Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228 (2003)

    ADS  Google Scholar 

  • Fortney, J.J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423 (2010)

    ADS  Google Scholar 

  • Fortov, V.E., Ilkaev, R.I., Arinin, V.A., Burtzev, V.V., Golubev, V.A., Iosilevskiy, I.L., Khrustalev, V.V., Mikhailov, A.L., Mochalov, M.A., Ternovoi, V.Y., Zhernokletov, M.V.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 185001 (2007)

    ADS  Google Scholar 

  • French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J., Redmer, R.: Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser. 202, 5 (2012)

    ADS  Google Scholar 

  • Galanti, E., Kaspi, Y.: Decoupling Jupiter’s deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model. Icarus 286, 46 (2017)

    ADS  Google Scholar 

  • Gastine, T., Wicht, J.: Effects of compressibility on driving zonal flow in gas giants. Icarus 219, 428 (2012)

    ADS  Google Scholar 

  • Gastine, T., Duarte, L., Wicht, J.: Dipolar versus multipolar dynamos: the influence of the background density stratification. Astron. Astrophys. 546, A19 (2012)

    ADS  Google Scholar 

  • Gastine, T., Wicht, J., Aurnou, J.M.: Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156 (2013)

    ADS  Google Scholar 

  • Gastine, T., Heimpel, M., Wicht, J.: Zonal flow scaling in rapidly-rotating compressible convection. Phys. Earth Planet. Inter. 232, 36 (2014a)

    ADS  Google Scholar 

  • Gastine, T., Wicht, J., Duarte, L.D.V., Heimpel, M., Becker, A.: Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 41, 5410 (2014b)

    ADS  Google Scholar 

  • Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. 438, L76 (2014c)

    ADS  Google Scholar 

  • Gilman, P.A.: Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93 (1977)

    ADS  MATH  Google Scholar 

  • Gilman, P.A.: Model calculations concerning rotation at high solar latitudes and the depth of the solar convection zone. Astrophys. J. 231, 284 (1979)

    ADS  Google Scholar 

  • Gilman, P.A., Foukal, P.V.: Angular velocity gradients in the solar convection zone. Astrophys. J. 229, 1179 (1979)

    ADS  Google Scholar 

  • Glatzmaier, G.: Numerical simulation of stellar convective dynamos. I. The model and methods. J. Comput. Phys. 55, 461 (1984)

    ADS  Google Scholar 

  • Glatzmaier, G.A., Gilman, P.A.: Compressible convection in a rotating spherical shell. II. A linear anelastic model. Astrophys. J. Suppl. Ser. 45, 351 (1981)

    Google Scholar 

  • Glatzmaier, G.A., Evonuk, M., Rogers, T.M.: Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn. 103, 31 (2009)

    ADS  MathSciNet  Google Scholar 

  • Gómez-Pérez, N., Heimpel, M., Wicht, J.: Effects of a radially varying electrical conductivity on 3D numerical dynamos. Phys. Earth Planet. Inter. 181, 42 (2010)

    ADS  Google Scholar 

  • Greenwood, D.A.: The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  • Grodent, D., Bonfond, B., GéRard, J.-C., Radioti, A., Gustin, J., Clarke, J.T., Nichols, J., Connerney, J.E.P.: Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, A09201 (2008)

    ADS  Google Scholar 

  • Grote, E., Busse, F.: Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62, 4457 (2000)

    ADS  Google Scholar 

  • Guillot, T.: The interior of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493 (2005)

    ADS  Google Scholar 

  • Guillot, T., Gautier, D.: Giant planets. In: Spohn, T., Schubert, G. (eds.) Treatise on Geophysics, vol. 10, 2nd edn., p. 529. Elsevier, Amsterdam (2015)

    Google Scholar 

  • Haas, P., Tran, F., Blaha, P.: Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79, 085104 (2009)

    ADS  Google Scholar 

  • Heimpel, M., Aurnou, J.: Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540 (2007)

    ADS  Google Scholar 

  • Heimpel, M., Gómez Pérez, N.: On the relationship between zonal jets and dynamo action in giant planets. Geophys. Res. Lett. 381, L14201 (2011)

    ADS  Google Scholar 

  • Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193 (2005)

    ADS  Google Scholar 

  • Helled, R., Stevenson, D.: The fuzziness of giant planets’ cores. Astrophys. J. Lett. L840, L4 (2017)

    ADS  Google Scholar 

  • Hess, S.L.G., Bonfond, B., Zarka, P., Grodent, D.: Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, A05217 (2011)

    ADS  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Google Scholar 

  • Holst, B., French, M., Redmer, R.: Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B 83, 235120 (2011)

    ADS  Google Scholar 

  • Holst, B., Redmer, R., Gryaznov, V.K., Fortov, V.E., Iosilevskiy, I.L.: Hydrogen and deuterium in shock wave experiments, ab initio simulations and chemical picture modeling. Eur. Phys. J. D 66, 104 (2012)

    ADS  Google Scholar 

  • Ingersoll, A.P., Pollard, D.: Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion. Icarus 52, 62 (1982)

    ADS  Google Scholar 

  • Jiang, J., Wang, J.: A non-axisymmetric spherical α2-dynamo. Chin. J. Astron. Astrophys. 6, 227 (2006)

    ADS  Google Scholar 

  • Jones, C.A.: A dynamo model of Jupiter’s magnetic field. Icarus 241, 148 (2014)

    ADS  Google Scholar 

  • Jones, C.A.: Thermal and compositional convection in the outer core. In: Olson, P. (ed.) Treatise on Geophysics, 2nd edn., p. 115. Elsevier, Oxford (2015)

    Google Scholar 

  • Jones, C.A., Kuzanyan, K.M.: Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227 (2009)

    ADS  Google Scholar 

  • Jones, C.A., Soward, A.M., Mussa, A.I.: The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  • Jones, C.A., Rotvig, J., Abdulrahman, A.: Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30, 1731 (2003)

    ADS  Google Scholar 

  • Jones, C.A., Kuzanyan, K.M., Mitchell, R.H.: Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S., Wicht, J.: Anelastic convection-driven dynamo benchmarks. Icarus 216, 120 (2011)

    ADS  Google Scholar 

  • Juranek, H., Redmer, R., Rosenfeld, Y.: Fluid variational theory for pressure dissociation in dense hydrogen: multicomponent reference system and nonadditivity effects. J. Chem. Phys. 117, 1768 (2002)

    ADS  Google Scholar 

  • Käpylä, P.J., Mantere, M.J., Guerrero, G., Brandenburg, A., Chatterjee, P.: Reynolds stress and heat flux in spherical shell convection. Astron. Astrophy. 531, A162 (2011)

    ADS  Google Scholar 

  • Kaspi, Y.: Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676 (2013)

    ADS  Google Scholar 

  • Kaspi, Y., Flierl, G.R., Showman, A.P.: The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202, 525 (2009)

    ADS  Google Scholar 

  • Kaspi, Y., Hubbard, W.B., Showman, A.P., Flierl, G.R.: Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, L01204 (2010)

    ADS  Google Scholar 

  • Kaspi, Y., Davighi, J.E., Galanti, E., Hubbard, W.B.: The gravitational signature of internal flows in giant planets: comparing the thermal wind approach with barotropic potential-surface methods. Icarus 276, 170 (2016)

    ADS  Google Scholar 

  • Kerley, G.I., Christian-Frear, T.L.: Sandia Report No. SAND93–1206. Technical report, Sandia National Laboratories (1993)

    Google Scholar 

  • King, E.M., Stellmach, S., Aurnou, J.M.: Heat transfer by rapidly rotating Rayleigh-Bénard convection. J. Fluid Mech. 691, 568 (2012)

    ADS  MATH  Google Scholar 

  • Knudson, M.D., Desjarlais, M.P., Becker, A., Lemke, R.W., Cochrane, K.R., Savage, M.E., Bliss, D.E., Mattsson, T.R., Redmer, R.: Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455 (2015)

    ADS  Google Scholar 

  • Kohanoff, J.: Electronic Structure Calculations for Solids and Molecules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    ADS  MathSciNet  Google Scholar 

  • Kong, D., Zhang, K., Schubert, G.: On the variation of zonal gravity coefficients of a giant planet caused by its deep zonal flows. Astrophys. J. 748, 143 (2012)

    ADS  Google Scholar 

  • Kong, D., Liao, X., Zhang, K., Schubert, G.: Gravitational signature of rotationally distorted Jupiter caused by deep zonal winds. Icarus 226, 1425 (2013)

    ADS  Google Scholar 

  • Kong, D., Liao, X., Zhang, K., Schubert, G.: Equatorial zonal jets and Jupiter’s gravity. Astrophys. J. Lett. 791, L24 (2014)

    ADS  Google Scholar 

  • Kong, D., Zhang, K., Schubert, G.: Odd gravitational harmonics of Jupiter: effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane. Icarus 277, 416 (2016)

    ADS  Google Scholar 

  • Kong, D., Zhang, K., Schubert, G.: On the gravitational signature of zonal flows in Jupiter-like planets: an analytical solution and its numerical validation. Phys. Earth Planet. Inter. 263, 1 (2017)

    ADS  Google Scholar 

  • Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)

    ADS  MathSciNet  Google Scholar 

  • Lantz, S.R., Fan, Y.: Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. Ser. 121, 247 (1999)

    ADS  Google Scholar 

  • Lesur, V., Wardinski, I., Rother, M., Mandea, M.: GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173, 382 (2008)

    ADS  Google Scholar 

  • Lian, Y., Showman, A.P.: Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373 (2010)

    ADS  Google Scholar 

  • Liu, J., Goldreich, P.M., Stevenson, D.J.: Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653 (2008)

    ADS  Google Scholar 

  • Lorenzen, W., Holst, B., Redmer, R.: Demixing of hydrogen and helium at megabar pressures. Phys. Rev. Lett. 102, 115701 (2009)

    ADS  Google Scholar 

  • Lorenzen, W., Holst, B., Redmer, R.: First-order liquid-liquid phase transition in dense hydrogen. Phys. Rev. B 82, 195107 (2010)

    ADS  Google Scholar 

  • Lorenzen, W., Holst, B., Redmer, R.: Metallization in hydrogen-helium mixtures. Phys. Rev. B 84, 235109 (2011)

    ADS  Google Scholar 

  • Lyon, S.P., Johnson, J.D.: Los Alamos Report No. LA-UR-92–3407. Technical report, Los Alamos National Lab (1992)

    Google Scholar 

  • Marx, D., Hutter, J.: Ab Initio Molecular Dynamics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Matt, S.P., Do Cao, O., Brown, B.P., Brun, A.S.: Convection and differential rotation properties of G and K stars computed with the ASH code. Astron. Nachr. 332, 897 (2011)

    ADS  Google Scholar 

  • McMahon, J.M., Morales, M.A., Pierleoni, C., Ceperley, D.M.: The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607 (2012)

    ADS  Google Scholar 

  • Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965)

    ADS  MathSciNet  Google Scholar 

  • Miguel, Y., Guillot, T., Fayon, L.: Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, A114 (2016)

    ADS  Google Scholar 

  • Militzer, B., Hubbard, W.B.: Ab initio equation of state for hydrogen–helium mixtures with recalibration of the giant-planet mass–radius relation. Astrophys. J. 774, 148 (2013)

    ADS  Google Scholar 

  • Militzer, B., Hubbard, W.B., Vorberger, J., Tamblyn, I., Bonev, S.A.: A massive core in Jupiter predicted from first-principles simulations. Astrophys. J. 688, L45 (2008)

    ADS  Google Scholar 

  • Morales, M.A., Schwegler, E., Ceperley, D., Pierleoni, C., Hamel, S., Caspersen, K.: Phase separation in hydrogen–helium mixtures at Mbar pressures. Proc. Natl. Acad. Sci. USA 106, 1324 (2009)

    ADS  Google Scholar 

  • Morales, M.A., Pierleoni, C., Schwegler, E., Ceperley, D.M.: Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proc. Natl. Acad. Sci. USA 107, 12799 (2010)

    ADS  Google Scholar 

  • Morales, M.A., Hamel, S., Caspersen, K., Schwegler, E.: Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys. Rev. B 87, 174105 (2013)

    ADS  Google Scholar 

  • Moses, E.: The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions. Astrophys. Space Sci. 336, 3 (2011)

    ADS  Google Scholar 

  • Nettelmann, N., Becker, A., Holst, B., Redmer, R.: Jupiter models with improved hydrogen EOS (H-REOS.2). Astrophys. J. 750, 52 (2012)

    Google Scholar 

  • Nettelmann, N., Püstow, R., Redmer, R.: Saturn structure and homogeneous evolution models with different EOS. Icarus 225, 548 (2013)

    ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  • Pierleoni, C., Morales, M.A., Rillo, G., Holzmann, M., Ceperley, D.M.: Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 113, 4953 (2016)

    ADS  Google Scholar 

  • Porco, C.C., West, R.A., McEwen, A., Del Genio, A.D., Ingersoll, A.P., Thomas, P., Squyres, S., Dones, L., Murray, C.D., Johnson, T.V., Burns, J.A., Brahic, A., Neukum, G., Veverka, J., Barbara, J.M., Denk, T., Evans, M.L., Ferrier, J.J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., Vasavada, A.R.: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299, 1541 (2003)

    ADS  Google Scholar 

  • Püstow, R., Nettelmann, W., Lorenzen, N., Redmer, R.: H/He demixing and the cooling behavior of Saturn. Icarus 267, 323 (2016)

    ADS  Google Scholar 

  • Raynaud, R., Petitdemange, L., Dormy, E.: Dipolar dynamos in stratified systems. Mon. Not. R. Astron. Soc. 448, 2055 (2015)

    ADS  Google Scholar 

  • Read, P.L., Dowling, T.E., Schubert, G.: Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 460, 608 (2009)

    ADS  Google Scholar 

  • Rhines, P.B.: Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417 (1975)

    ADS  MATH  Google Scholar 

  • Ridley, V.A., Holme, R.: Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. 121, 309 (2016)

    Google Scholar 

  • Rotvig, J., Jones, C.: Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Rüdiger, G., Elstner, D., Ossendrijver, M.: Do spherical α2-dynamos oscillate? Astron. Astrophys. 406, 15 (2003)

    ADS  MATH  Google Scholar 

  • Sasaki, Y., Takehiro, S.-I., Kuramoto, K., Hayashi, Y.-Y.: Weak-field dynamo emerging in a rotating spherical shell with stress-free top and no-slip bottom boundaries. Phys. Earth Planet. Inter. 188, 203 (2011)

    ADS  Google Scholar 

  • Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170 (2004)

    ADS  Google Scholar 

  • Saumon, D., Chabrier, G., van Horn, H.M.: An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995)

    ADS  Google Scholar 

  • Schrinner, M., Petitdemange, L., Dormy, E.: Dipole collapse and dynamo waves in global direct numerical simulations. Astrophys. J. 752, 121 (2012)

    ADS  Google Scholar 

  • Schrinner, M., Petitdemange, L., Raynaud, R., Dormy, E.: Topology and field strength in spherical, anelastic dynamo simulations. Astron. Astrophys. 564, A78 (2014)

    ADS  Google Scholar 

  • Scott, R.K., Polvani, L.M.: Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, L24202 (2008)

    ADS  Google Scholar 

  • Showman, A.P., Kaspi, Y., Flierl, G.R.: Scaling laws for convection and jet speeds in the giant planets. Icarus 211, 1258 (2011)

    ADS  Google Scholar 

  • Simitev, R., Busse, F.: Patterns of convection in rotating spherical shells. New J. Phys. 5, 97 (2003)

    ADS  MATH  Google Scholar 

  • Simitev, R., Busse, F.: Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J. Fluid Mech. 532, 365 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Simitev, R.D., Busse, F.H.: Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys. Lett. 85, 19001 (2009)

    ADS  Google Scholar 

  • Soderlund, K.M., Heimpel, M.H., King, E.M., Aurnou, J.M.: Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224, 97 (2013)

    ADS  Google Scholar 

  • Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151 (2004)

    ADS  Google Scholar 

  • Stanley, S., Zuber, M.T., Bloxham, J.: Using reversed magnetic flux spots to determine a planet’s inner core size. Geophys. Res. Lett. 34, 19205 (2007)

    ADS  Google Scholar 

  • Stevenson, D.J.: Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21, 113 (1982)

    ADS  Google Scholar 

  • Stevenson, D., Salpeter, E.: The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. S. 35, 221 (1977a)

    ADS  Google Scholar 

  • Stevenson, D., Salpeter, E.: The dynamics and helium distribution in hydrogen-helium fluid plantes. Astrophys. J. Suppl. S. 35, 221 (1977b)

    ADS  Google Scholar 

  • Sukoriansky, S., Dikovskaya, N., Galperin, B.: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 3312 (2007)

    ADS  Google Scholar 

  • Tamblyn, I., Bonev, S.A.: Structure and phase boundaries of compressed liquid hydrogen. Phys. Rev. Lett. 104, 065702 (2010)

    ADS  Google Scholar 

  • Teed, R.J., Jones, C.A., Hollerbach, R.: On the necessary conditions for bursts of convection within the rapidly rotating cylindrical annulus. Phys. Fluids 24, 066604 (2012)

    ADS  MATH  Google Scholar 

  • Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Vallis, G.K., Maltrud, M.E.: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 1346 (1993)

    ADS  Google Scholar 

  • Vasavada, A.R., Showman, A.P.: Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935 (2005)

    ADS  MathSciNet  Google Scholar 

  • Verhoeven, J., Stellmach, S.: The compressional β-effect: a source of zonal winds in planets? Icarus 237, 143 (2014)

    ADS  Google Scholar 

  • Weir, S.T., Mitchell, A.C., Nellis, W.J.: Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 1860 (1996)

    ADS  Google Scholar 

  • Wicht, J.: Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281 (2002)

    ADS  Google Scholar 

  • Wicht, J., Christensen, U.R.: Torsional oscillations in dynamo simulations. Geophys. J. Int. 181, 1367 (2010)

    ADS  Google Scholar 

  • Williams, G.P.: Planetary circulations: I. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399 (1978)

    ADS  Google Scholar 

  • Wilson, H.F., Militzer, B.: Sequestration of noble gases in giant planet interiors. Phys. Rev. Lett. 104, 121101 (2010)

    ADS  Google Scholar 

  • Yadav, R.K., Gastine, T., Christensen, U.R., Duarte, L.D.V.: Consistent scaling laws in anelastic spherical shell dynamos. Astrophys. J. 774, 6 (2013)

    ADS  Google Scholar 

  • Zhang, K.: Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work presented here was extensively supported by the German Science Foundation within the Special Priority Program 1488 “PlanetMag.” Most of the numerical dynamo and flow simulations have been performed at the “Gesellschaft für Wissenschaftliche Datenverarbeitung” in Göttingen and the “Max Planck Computing and Data Facility” in Garching.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wicht, J. et al. (2018). Modeling the Interior Dynamics of Gas Planets. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_2

Download citation

Publish with us

Policies and ethics