Skip to main content
Log in

Hot-Wire-Based Estimation of Pressure Fluctuations in the Near Field of a Jet in the Presence of a Coflow

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

It is shown that the velocity fluctuation spectra measured using a hot wire in the potential flow region of the near field of a turbulent jet with a coflow can be converted into pressure fluctuation spectra. The proposed conversion method is based on the fact that the structure of instability waves, which make a decisive contribution to jet near-field fluctuations, resembles homogeneous one-dimensional waves, which makes it possible to locally link pressure fluctuations and the fluctuations of the streamwise velocity component measured by a hot wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. V. M. Kuznetsov, Acoust. Phys. 49 (3), 241 (2003).

    Article  ADS  Google Scholar 

  2. N. Peak, Ann. Rev. Fluid Mech. 44, 227 (2012).

    Article  ADS  Google Scholar 

  3. V. Kopiev, I. Belyaev, G. Faranosov, Vl. Kopiev, N. Ostrikov, M. Zaytsev, and G. Paranin, in Proc. 20th AIAA/CEAS Aeroacoustics Conf. (Atlanta, 2014), Paper No. AIAA-2014-3060.

  4. S. A. Miller, AIAA J. 53 (8), 2130 (2015).

    Article  ADS  Google Scholar 

  5. A. S. Ginevskii, E. V. Vlasov, and R. K. Karavosov, Acoustical Control of Turbulent Flows (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  6. P. Jordan and Y. Gervais, Exp. Fluids 44 (1), 1 (2008).

    Article  Google Scholar 

  7. C. K. Tam, K. Viswanathan, K. K. Ahuja, and J. Panda, J. Fluid Mech. 615, 253 (2008).

    Article  ADS  Google Scholar 

  8. V. F. Kopiev and S. A. Chernyshev, Acoust. Phys. 58 (4), 442 (2012).

    Article  ADS  Google Scholar 

  9. P. Jordan and T. Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013).

    Article  ADS  Google Scholar 

  10. O. P. Bychkov, M. Yu. Zaytsev, V. F. Kopiev, G. A. Faranosov, and S. A. Chernyshev, Dokl. Phys. 67 (9), 269 (2022).

    Article  ADS  Google Scholar 

  11. K. Gudmundsson and T. Colonius, J. Fluid Mech. 689, 97 (2011).

    Article  ADS  Google Scholar 

  12. A. V. G. Cavalieri, D. Rodriguez, P. Jordan, T. Colonius, and Y. Gervais, J. Fluid Mech. 730, 559 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. V. Belyaev, O. P. Bychkov, M. Yu. Zaitsev, V. A. Kopiev, V. F. Kopiev, N. N. Ostrikov, G. A. Faranosov, and S. A. Chernyshev, Fluid Dyn. 53 (3), 347 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. G. Mengle, in Proc. 17th AIAA/CEAS Aeroacoustics Conf. (32nd AIAA Aeroacoustics Conf.) (Portland, 2011), Paper No. AIAA 2011-2705.

  15. V. F. Kopiev, G. A. Faranosov, M. Yu. Zaytsev, E. V. Vlasov, R. K. Karavosov, I. V. Belyaev, and N. N. Ostrikov, in Proc. 19th AIAA/CEAS Aeroacoustics Conf. (Berlin, 2013), Paper No. AIAA 2013-2284.

  16. A. V. G. Cavalieri, P. Jordan, W. R. Wolf, and Y. Gervais, J. Sound Vib. 333, 6516 (2014).

  17. O. P. Bychkov and G. A. Faranosov, Acoust. Phys. 64 (4), 437 (2018).

    Article  ADS  Google Scholar 

  18. V. F. Kopiev, Y. S. Akishev, I. V. Belyaev, N. K. Berezhetskaya, V. A. Bityurin, G. A. Faranosov, M. E. Grushin, A. I. Klimov, V. A. Kopiev, I. A. Kossyi, I. A. Moralev, N. N. Ostrikov, M. I. Taktakishvili, N. I. Trushkin, and M. Yu. Zaytsev, J. Phys. D: Appl. Phys. 47, 1 (2014).

    Article  Google Scholar 

  19. V. F. Kopiev, O. P. Bychkov, V. A. Kopiev, G. A. Faranosov, I. A. Moralev, and P. N. Kazanskii, Acoust. Phys. 67 (4), 413 (2021).

    Article  ADS  Google Scholar 

  20. V. Kopiev, G. Faranosov, O. Bychkov, Vl. Kopiev, I. Moralev, and P. Kazansky, J. Sound Vib. 484, 115515 (2020).

    Article  Google Scholar 

  21. V. F. Kop’ev, O. P. Bychkov, V. A. Kop’ev, G. A. Faranosov, I. A. Moralev, and P. N. Kazanskii, Acoust. Phys. 69 (2), 193 (2023).

    Article  ADS  Google Scholar 

  22. M. Mancinelli, T. Pagliaroli, R. Camussi, and T. Castelain, J. Fluid Mech. 836, 998 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. F. Dawson, J. L. T. Lawrence, R. H. Self, and M. J. Kingan, AIAA J. 58 (3), 1130 (2020).

    Article  ADS  Google Scholar 

  24. R. H. Kraichnan, J. Acoust. Soc. Am. 28 (1), 64 (1956).

    Article  ADS  Google Scholar 

  25. T. Baur and J. Kongeter, in Proc. 3rd Int. Workshop on PIV (Santa Barbara, 1999), p. 101.

  26. X. Liu and J. Katz, Exp. Fluids 41 (2), 227 (2006).

    Article  Google Scholar 

  27. D. Violato, P. Moore, and F. Scarano, Exp. Fluids 50 (4), 1057 (2011).

    Article  Google Scholar 

  28. G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, et al., The Theory of Turbulent Flow, Ed. by G. N. Abramovich (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  29. O. T. Schmidt, A. Towne, T. Colonius, A. V. Cavalieri, P. Jordan, and G. A. Brès, J. Fluid Mech. 825, 1153 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  30. L. A. Antonialli, A. V. Cavalieri, O. T. Schmidt, T. Colonius, P. Jordan, A. Towne, and G. A. Brès, AIAA J. 59 (2), 559 (2021).

    Article  ADS  Google Scholar 

  31. O. P. Bychkov and G. A. Faranosov, Flui Dyn. 56 (4), 481 (2021).

    Article  Google Scholar 

  32. C. K. W. Tam and D. E. Burton, J. Fluid Mech. 138, 273 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  33. O. P. Bychkov and G. A. Faranosov, Acoust. Phys. 60 (6), 633 (2014).

    Article  ADS  Google Scholar 

  34. L. F. M. Soares, A. V. G. Cavalieri, V. Kopiev, and G. Faranosov, AIAA J. 58 (9), 3877 (2020).

    Article  ADS  Google Scholar 

  35. B. Lyu, A. P. Dowling, and I. Naqavi, J. Fluid Mech. 811, 234 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  36. O. Bychkov, G. Faranosov, V. Kopiev, L. F. M. Soares, and A. V. G. Cavalieri, AIAA J. 60 (6), 3620 (2022).

    Article  ADS  Google Scholar 

  37. O. P. Bychkov, V. F. Kop’ev, and G. A. Faranosov, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 1, 1 (2020).

  38. W. R. Miller, in Proc. 8th Aeroacoustics Conf. (Atlanta, 1983), Paper No. AIAA-1983-0784.

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.F. Kopiev for the interest in this study and valuable comments.

Funding

The study was financially supported by the Russian Science Foundation (grant no. 19-71-10064). The experimental part of the study was carried out at the TsAGI AC-2 anechoic chamber with flow, upgraded with the financial support of the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2022-1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Faranosov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, O.P., Faranosov, G.A. Hot-Wire-Based Estimation of Pressure Fluctuations in the Near Field of a Jet in the Presence of a Coflow. Acoust. Phys. 70, 116–129 (2024). https://doi.org/10.1134/S1063771023600286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600286

Keywords:

Navigation