Skip to main content
Log in

Subsonic jet aeroacoustics: associating experiment, modelling and simulation

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An overview of jet noise research is presented wherein the principal movements in the field are traced since its beginnings. Particular attention is paid to the evolution of our understanding of what we call a “source mechanism” in free shear flows; to the theoretical, experimental and numerical studies which have nurtured this understanding; and to the currently unresolved conceptual difficulties which render analysis of experimental and numerical data so difficult. As it is clear that accelerated progress in this field of research can be made possible by a more effective synergy between the theoretical, experimental and numerical disciplines—one which draws in particular on the impressive recent progress in experimental and numerical techniques—we endeavour to elucidate the various “source” characteristics identified by these different means of study; the points on which the studies agree or disagree, and the significance of such accord or discord; and, the new analysis possibilities which can now be realised by effectively associating experiment, modelling and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Jet dynamic Mach is defined as U/c j where U is the jet exit velocity, and c j the sound speed based on the jet temperature, acoustic Mach number is defined as U/c o , where c o is the ambient temperature.

  2. This was based on a three-way split of flow quantities into time averaged, phase-averaged and random components (associated, respectively, with the mean flow, the large-scale instability and the fine-scaled, random turbulence) which was first used by the turbulence community in order to understanding the dynamics of coherent structures in free shear flows (see Hussain and Reynolds 1970 for example).

  3. It should be noted that the turbulence in a round jet is neither isotropic nor homogeneous, and so neglect of the third order term may constitute a dangerous oversimplification.

  4. By pressure production terms we mean terms such as are found on the right-hand side of a Poisson’s equation for the pressure field in an incompressible turbulence field.

  5. The stochastic estimation is in fact exactly equivalent to the Extended POD, in that the EPOD amounts to the solution of the linear problem.

References

  • Adrian RJ (1977) On the role of conditional averages in turbulence theory. In: Proceedings of 4th biennal symposium on turbulence in liquids

  • Andersson N, Eriksson L-E, Davidson L (2005) Investigation of an isothermal Mach 0.75 jet and its radiated sound using large-eddy smulation and Kirchoff surface integration. Int J Heat Fluid Flow 26:393–410

    Article  Google Scholar 

  • Arbey H, Ffowcs-Williams JE (1984) Active cancellation of pure tones in an excited jet. J Fluid Mech 149:445–454

    Article  Google Scholar 

  • Armstrong RR, Michalke A, Fuchs H (1977) Coherent structures in jet turbulence and noise. AIAA J 15(7)

  • Arndt REA, Long DF, Glauser MN (1997) The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J Fluid Mech 340:1–33

    Article  Google Scholar 

  • Atvars J, Schubert LK, Ribner HS (1965) Refraction of sound from a point source placed in an air jet. J Acoust Soc Am 37:168–170

    Google Scholar 

  • Batchelor GK (1953) Homogeneous turbulence. Cambridge University Press, London

  • Bodony DJ, Lele SK (2006) Generation of low frequency sound in turbulent jets. In: Proceedings of 11th AIAA/CEAS Aeroacoustics conference, Paper AIAA-2005-3041

  • Bogey C, Bailly C (2004) Investigation of subsonic jet noise using LES: Mach and Reynolds number effects. In: Proceedings of 10th AIAA/CEAS Aeroacoustics conference, Paper AIAA-2004-3023

  • Bogey C, Bailly C (2005) Investigation of sound sources in subsonic jets using causality methods on LES data. In: Proceedings of 11th AIAA/CEAS Aeroacoustics conference, Paper AIAA-2005-2886

  • Bogey C, Bailly C, Juvé D (2003) Noise investigation of a high subsonic, moderate Reynolds numberr jet using a compressible LES. Theor Comp Fluid Dyn 16(4):273–297

    Article  MATH  Google Scholar 

  • Bonnet CMT, Fisher MJ (1979) Correlation techniques and modal decomposition analysis for the detection of azimuthally coherent structures in jet flows. J Sound Vib 66:545–555

    Article  MATH  Google Scholar 

  • Bonnet J-P, Cole D, Delville J, Glauser M, Ukeiley L (1994) Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp Fluids 17:307–314

    Article  Google Scholar 

  • Boree J (2003) Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp Fluids 35:188–192

    Article  Google Scholar 

  • Bradshaw P, Ferris DH, Johnson RF (1964a) Turbulence in the noise producing region of a circular jet. J Fluid Mech 19:591

    Article  MATH  Google Scholar 

  • Bradshaw P, Ferriss DH, Johnson RF (1964b) Turbulence in the noise-producing region of a circular jet. J Fluid Mech 19:591–624

    Article  MATH  Google Scholar 

  • Bridges J (2002) Measurements of turbulent flow field in separate flow nozzles with enhanced mixing devices. Test report NASA/TM-2002-211366

  • Bridges J, Hussain F (1992) Direct evaluation of aeroacoustic theory in a jet. J Fluid Mech 240:469–501

    Article  Google Scholar 

  • Bridges J, Hussain F (1995) Effects of nozzle body on jet noise. J Sound Vib 188(3):407–418

    Article  Google Scholar 

  • Brown G, Roshko A (1974) On density effects and large-scale structure in turbulent mixing-layers. J Fluid Mech 64:775

    Article  Google Scholar 

  • Cabana M, Fortuné V, Jordan P (2006) Identifying the radiating core of Lighthill's source term. Theor Comp Fluid Dyn (in press)

  • Chan YY (1974) Spatial waves in turbulent jets. Phy Fluids 17(1)

  • Chandrasekhar S (1950) The theory of axisymmetric turbulence. Phil Trans R Soc A 242

  • Chatellier L, Fitzpatrick J (2006) Point reference global correlation technique. Exp Fluids 38(55):563–575

    Google Scholar 

  • Chu WT (1966) Turbulence measurements relevant to jet noise. UTIAS report no. 19, University of Toronto

  • Coiffet F (2006) Étude stochastic tridimensionnelle de la dualité des pressions en champ proche des jets axisymétriques turbulents à haut nombre de Reynolds. PhD Thesis, Université de Poitiers

  • Coiffet F, Jordan P, Delville J, Gervais Y, Ricaud F (2006) Coherent structures in subsonic jets: a quasi-irrotational source mechanism ? Int J Aeroacoust 5(1):67–89

    Article  Google Scholar 

  • Colonius T, Lele SK (2004) Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog Aerosp Sci 40:345–416

    Article  Google Scholar 

  • Colonius T, Lele SK, Moin P (1997) Sound generation in a mixing-layer. J Fluid Mech 330:375–409

    Article  MATH  Google Scholar 

  • Crighton DG (1975) Basic principals of aerodynamic noise generation. Prog Aerosp Sci 16

  • Crighton D, Huerre P (1990) Shear-layer pressure fluctuations and superdirective acoustic sources. J Fluid Mech 220

  • Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48(3):547–591

    Article  Google Scholar 

  • Dahan C, Elias G, Maulard J, Perulli M (1978) Coherent structures in the mixing zone of a subsonic hot free jet. J Sound Vib 59(3):313–333

    Article  Google Scholar 

  • Davies POAL, Fisher M, Barrat M (1963) The characteristics of turbulence in the mixing region of a round jet. J Fluid Mech 15:337–367

    Article  Google Scholar 

  • Devenport W, Muthanna C, Ma R, Glegg S (2001) Two-point descriptions of wake turbulence with application to noise prediction. AIAA J 39:2302–2307

    Google Scholar 

  • Eschricht D, Wei M, Jordan P, Freund JB, Thiele F (2007) Analysis of two-dimensional noise controlled mixing-layers. In: Proceedings of 13th AIAA/CEAS aeroacoustics conference. Paper AIAA-2007-3660

  • Ewert R, Schroeder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comp Phys 188:365–398

    Article  MATH  Google Scholar 

  • Ewing D, Citriniti J (1997) Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer. In: Soresen, Hopfinger, Aubry (eds) IUTAM symposium on simulation and identification of organized structures in flows. Kluwer, Dordrecht, pp 375–384

  • Ffowcs-Williams JE (1963) The noise from turbulence convected at high speed. Phil Trans R Soc A 255

  • Ffowcs Williams JE, Kempton AJ (1978) The noise from the large scale structure of a jet. J Fluid Mech 84:673–694

    Article  Google Scholar 

  • Fisher MJ, Davies POAL (1964) Correlation measurements in a non-frozen pattern of turbulence. J Fluid Mech 18:97–116

    Article  MATH  Google Scholar 

  • Fisher MJ, Lush PA, Harper-Bourne M (1973) Jet noise. J Sound Vib. 28:563–585

    Article  Google Scholar 

  • Fleury V, Bailly C, Juvé D (2005) Shear-layer acoustic radiation in an excited subsonic jet: experimental study. C R Mec 333:746–753

    Article  Google Scholar 

  • Franz GJ (1959) The near-sound field of turbulence. DTMB Report 982, NS715–102

  • Freund JB (2001) Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J Fluid Mech 438:277–305

    Google Scholar 

  • Freund JB (2003) Noise-source turbulence statistics and the noise from a Mach 0.9 jet. Phy Fluids 15(6):1788–1799

    Article  MathSciNet  Google Scholar 

  • Freund JB, Samanta J, Lele S, Wei M (2005) The robustness of acoustic analogies. AIAA Paper 2005–2940

  • Fuchs HV (1972) Space correlations of the fluctuating pressure in subsonic turbulent jets. J Sound Vib 23(1):77–99

    Article  Google Scholar 

  • Fuchs HV (1978) Two-point correlations of jet noise and their interpretation. Letter to Editor; Ribner HS (1978) Authors reply. J Sound Vib 61(1):153–159

    Google Scholar 

  • Fuchs HV, Michel U (1978) Experimental evidence of turbulent source coherence affecting jet noise. AIAA J 16:871–872

    Google Scholar 

  • Gatski TB (1979) Sound production due to large-scale coherent structures. AIAA J 17(6):79-4081

    Google Scholar 

  • George WK, Beuther PD, Arndt RE (1984) Pressure spectra in turbulent free shear flows. J Fluid Mech 148:155–191

    Google Scholar 

  • George WK, Wänström M, Jordan P (2007) Identifying aeroacoustic sources. In: 13th AIAA/CEAS aeroacoustics conference. Paper AIAA-2007-3603

  • Ghosh A, Bridges J, Hussain F (1995) Instantaneous directivity in jet noise by multi-pole decomposition. Trans ASME 117

  • Goldstein ME (1984) Aeroacoustics of turbulent shear flows. Ann Rev Fluid Mech 16:263–285

    Article  Google Scholar 

  • Goldstein ME (2003) A generalised acoustic analogy. J Fluid Mech 488:315–333

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein ME (2005) On identifying the true sources of aerodynamic sound. J Fluid Mech 526:337–347

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstein ME, Leib (2005) The role of instability waves in predicting jet noise. J Fluid Mech 284:37–72

    Article  MathSciNet  Google Scholar 

  • Goldstein ME, Rosenbaum B (1973) Effect of anisotropic turbulence on aerodynamic noise. AIAA J 37

  • Groschel E, Schroeder W (2005) Noise generation mechanisms in turbulent jets. Euromech Colloquium 467: Turbulent flow and noise generation, Marseille, France

  • Guerin S, Michel U (2006) Circumferential analysis of the near pressure field of a co-axial subsonic jet. Presented at 10th CEAS-ASC workshop: jet noise prediction methodologies, recent developments. Dublin, Ireland

  • Guitton A, Jordan P, Laurendeau E, Delville J (2007) Velocity dependence of the near pressure field of subsonic jets: understanding the associated source mechanisms. AIAA-2007-3661

  • Guj G, Carley C, Camussi R (2003) Acoustic identification of coherent structures in a turbulent jet. J Sound Vib 259(5):1037–1065

    Article  Google Scholar 

  • Harper-Bourne M (2004) On modelling the hydrodynamic field of high-speed jets. In: 10th AIAA/CEAS aeroacoustics conference

  • Hileman J, Thurow B, Caraballo E, Samimy M (2005) Large-scale structure evolution and sound emission in high-speed jets: real-time visualisation with simultaneous acoustic measurements. J Fluid Mech 544

  • Howe MS (1975) Contribution to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J Fluid Mech 71(4):625–673

    Article  MATH  MathSciNet  Google Scholar 

  • Howes WL (1960) Distribution of time-averaged pressure fluctuations along the boundary of a round subsonic jet. NASA technical note D-468

  • Hussain AKMF, Reynolds WC (1970) The mechanics of an organised wave in turbulent shear flow. J Fluid Mech 41:241

    Article  Google Scholar 

  • Jordan P, Gervais Y (2005) Modelling self- and shear-noise mechanisms in inhomogeneous, anisotropic turbulence. J Sound Vib 279:529–555

    Article  Google Scholar 

  • Jordan P, Gervais Y, Wells R, Delville J (2004) Optimisation of correlation function models for statistical jet noise modelling. In: Joint CFA/DAGA conference, Strasbourg, France

  • Jordan P, Tinney E, Delville J, Coiffet F, Glauser MN, Hall A (2005) Low-dimensional signatures of the sound production mechanisms in subsonic jets: towards their identification and control. In: Proceedings of 35th AIAA fluid dynamics conference and exhibit. Paper AIAA-2005-4647

  • Jordan P, Schlegel M, Stalnov O, Noack BR, Tinney CE (2007) Identifying noisy and quiet modes in a jet. In: Proceedings of 13th AIAA/CEAS aeroacoustics conference. Paper AIAA-2007-3602

  • Jung D, Gamard S, George WK (2004) Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J Fluid Mech 514:173–204

    Article  MATH  Google Scholar 

  • Juvé D, Sunyach M, Comte-Bellot G (1979) Filtered azimuthal correlations in the acoustic farfield of a subsonic jet. AIAA J 17(1)

  • Juvé D, Sunyach M, Comte-Bellot G (1980) Intermittency of the noise emission in subsonic cold jets. J Sound Vib 71(3):319–332

    Article  Google Scholar 

  • Keast DN, Maidanik G (1966) Studies in the near field noise properties of a small air jet. Bolt, Beranek and Newman, Report 1272

  • Kerhervé F, Jordan P, Gervais Y, Valière J-C, Braud P (2004) Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp Fluids 37:419–437

    Article  Google Scholar 

  • Kerhervé F, Fitzpatrick JA, Jordan P (2006) The frequency dependence of jet turbulence for noise source modelling. J Sound Vib (in press)

  • Khavaran A (1999) Role of anisotropy in turbulent mixing noise. AIAA J 37:832

    Article  Google Scholar 

  • Khavaran A, Bridges J (2005) Modelling of fine-scle turbulence mixing noise. J Sound Vib 279(3-5):1131–54

    Article  Google Scholar 

  • Kibens V (1980) Discrete noise spectrum generated by an acoustically excited jet. AIAA J 18(4):79-0592R

    Google Scholar 

  • Kopiev VF, Chernyshev SA (1997) Vortex ring eigen-oscillations as a source of sound. J Fluid Mech 341:19–57

    Article  MATH  MathSciNet  Google Scholar 

  • Kopiev VF, Zaitsev M, Chernyshev SA, Kotova AN (1999) The role of large-scale vortex in a turbulent jet noise. AIAA Paper 99-1839

  • Kopiev VF, Zaitsev M, Chernyshev SA (2006) Comparison of vortex ring noise theory with excited jet acoustic measurements. In: 10th CEAS-ASC workshop, Trinity College, Dublin, Ireland

  • Lau JC, Fisher MJ, Fuchs HV (1972) The intrinsic structure of turbulent jets. J Sound Vib 22(4):379–406

    Article  Google Scholar 

  • Laufer J, Yen T-C (1983) Noise generation by a low-Mach-number jet. J. Fluid Mech 134:1–31

    Article  Google Scholar 

  • Lee HK, Ribner HS (1972) Direct correlation of noise and flow of a jet. J Acoust Soc Am 52(5)

  • Lighthill MJ (1952) On sound generated aerodynamically: general theory. Proc R Soc 211:564–587

    Article  MATH  MathSciNet  Google Scholar 

  • Lighthill MJ (1954) On sound generated aerodynamically: turbulence as a source of sound. Proc R Soc 222:1

    Article  MATH  MathSciNet  Google Scholar 

  • Lilley GM (1974) On the noise from jets. AGARD Conference proceedings No. 131 paper 13

  • Liu JTC (1974) Developing large-scale wavelike eddies and the near jet noise field. J Fluid Mech 62(3):437–464

    Article  MATH  Google Scholar 

  • Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation (eds). Yaglom and Tatarsky, Nauka, Moscow

  • Maestrello L (1977) Statistical properties of the sound and source fields of an axisymmetric jet. AIAA Paper 77-1267

  • Mankbadi R, Liu JTC (1981) Phil Trans R Soc Lond A 298(541)

  • Mankbadi R, Liu JTC (1984) Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil Trans R Soc Lond A 311:183–217

    Article  MATH  Google Scholar 

  • Mayes MH, Lanford WE, Hubbard HH (1959) Near-field and far-field noise surveys of solid-fuel rocket engines for a range of nozzle exit pressures. NASA technical note D-21

  • Michalke A (1964) On the inviscid instability of the hyperbolic-tangent velocity profile. J Fluid Mech 543–556

  • Michalke A (1965) On spatially growing disturbances in an inviscid shear layer. J Fluid Mech 23:521–544

    Article  MathSciNet  Google Scholar 

  • Michalke A, Fuchs HV (1975) On turbulence and noise of an axisymmetric shear layer. J Fluid Mech 70(1):179–205

    Article  MATH  Google Scholar 

  • Millet C, Casalis G (2004) Exponential-algebraic transition in the near-field of low supersonic jets. Eur J Mech B/Fluids 23:367–379

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell BE, Lele SK, Moin P (1995) Direct computation of the sound from a compressible co-rotatin vortex pair. J Fluid Mech 285:181–202

    Article  MATH  MathSciNet  Google Scholar 

  • Möhring W (1978) On vortex sound at low Mach number. J Fluid Mech 85:685

    Article  MATH  MathSciNet  Google Scholar 

  • Mohseni K, Colonius T, Freund JB (2002) An evaluation of linear instability waves as sources of sound in a supersonic turbulent jet. Phys Fluids 14(10)

  • Mollo-Christensen E (1963) Measurements of near field pressure of subsonic jets. NATO A.G.A.R.D. Report 449

  • Mollo-Christensen E (1967) Jet noise and shear flow instability seen from an experimenter’s point of view. ASME J Appl Mech E89

  • Moore CJ (1977) The role of shear-layer instability waves in jet exhaust noise. J Fluid Mech 80(2):321–367

    Article  Google Scholar 

  • Morfey CL, Szewczyk VM, Tester BJ (1978) New scaling laws for hot and cold jet mixing noise based on a geometric acoustics model. J Sound Vib 61:255–292

    Article  Google Scholar 

  • Morris PJ (1977) Flow characteristics of the large-scale wave-like structure of a supersonic round jet. J Sound Vib 53:223–244

    Article  Google Scholar 

  • Morrison GL, McLaughlin DK (1979) Noise generation by instabilities in low Reynolds number supersonic jets. J Sound Vib 65:177–191

    Article  Google Scholar 

  • Moyal P (1952) Pressure spectra of compressible turbulence. Proc Camb Phil Soc 48:329

    Article  MATH  MathSciNet  Google Scholar 

  • Ollerhead JB (1967) On the prediction of the near field noise of supersonic jets. NASA report CR-857

  • Panda J, Seasholtz RG, Elam KA (2005) Investigation of noise sources in high-speed jets via correlation measurements. J Fluid Mech 537:349–385

    Article  MATH  Google Scholar 

  • Picard C (2001) Étude expérimentale de l’identification des sources acoustiques dans les jets par l’analyse de la fluctuation de pression en champ proche. PhD thesis, Universté de Poitiers

  • Picard C, Delville J (2000) Pressure velocity coupling in a subsonic round jet. Heat Fluid Flow 21:359–364

    Article  Google Scholar 

  • Powell A (1963) On sound radiation in terms of pressure independent of the sound speed. J Acoust Soc Am 35:1133–1143

    Article  MathSciNet  Google Scholar 

  • Powell A (1964) Theory of vortex sound. J Acoust Soc Am 16:177–195

    Article  MathSciNet  Google Scholar 

  • Proudman I (1952) The generation of sound by isotropic turbulence. Proc R Soc Lond 119–132

  • Reba N, Narayanan S, Colonius T, Suzuki T (2006) Modelling jet noise from organised structures using near-field hydrodynamic pressure. In: Proceedings of 11th AIAA/CEAS aeroacoustics conference. Paper AIAA-2005-3093

  • Ribner HS (1962) Aerodynamic sound from fluid dilatations. UTIA report No. 86, AFOSR TN 3430

  • Ribner HS (1969) Quadrupole correlations governing jet noise. J Fluid Mech 38:1–24

    Article  MATH  Google Scholar 

  • Ribner HS (1981) Perspectives on jet noise. Dryden lecture AIAA J 19(12)

  • Ricaud F (2003) Étude de l’identification des sources acoustiques à partir du couplage de la pression en champ proche et de l’organisation instantanée de la zone de mélange de jet. Ph.D thesis, Universit de Poitiers

  • Sandham ND, Morfey CL, Hu Z (2005) Nonlilnear mechanisms of sound generation in a perturbed parallel jet flow. J Fluid Mech 2565:1–23

    MathSciNet  Google Scholar 

  • Schaffer M (1979) Direct measurements of the correlation between axial in-jet velocity fluctuations and far field noise near the axis of a cold jet. J Sound Vib 64(1):73–83

    Article  Google Scholar 

  • Schaffer M, Hancy JP (1982) Investigation of the noise emitting zones of a cold jet via causality correlations. J Sound Vib 81(3):377–391

    Article  Google Scholar 

  • Scharton TD, White PH (1972) Simple pressure source model of jet noise. J Acoust Soc Am 52(1)

  • Schram C, Hirschberg A (2003) Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. J Sound Vib. 266(5):1079–1098

    Article  Google Scholar 

  • Schram C, Taubitz S, Anthoine J, Hirschberg A (2005) Theoretical/empirical prediction and measurement of the sound produced by vortex pairing in a low Mach number jet. J Sound Vib 281(1–2):171–187

    Article  Google Scholar 

  • Seiner JM (1974) The distribution of jet source strength intensity by means of a direct correlation technique. PhD thesis, Pennsylvania State University

  • Seiner JM, Reethof G (1974) On the distribution of source coherency in subsonic jets. AIAA Paper 74-4

  • Seiner JM, Ukeiley L, Ponton M (1999) Jet noise source measurements using PIV. AIAA Paper 99–1896

  • Self RH (2004) Jet noise prediction using the Lighthill acoustic analogy. J Sound Vib 275:757–768

    Article  Google Scholar 

  • Siddon TE, Rackl R (1972) Cross-correlation analysis of flow noise with fluid dilatations as source fluctuation. J Acoust Soc Am 51(96A)

  • Stromberg JL, McLaughlin DK, Troutt TR (1980) Flow field and acoustic properties of a Mach number 0.9 jet at a low Reynolds number. J Sound Vib 72(2):159–176

    Article  Google Scholar 

  • Suzuki T, Colonius T (2006) Instability waves in a subsonic round jet detected using a near-field phased microphone array. J Fluid Mech 565:197–226

    Article  MATH  Google Scholar 

  • Tam CKW (1972) On the noise of a nearly ideally expanded supersonic jet. J Fluid Mech 51:69–95

    Article  MATH  Google Scholar 

  • Tam CKW (1998) Jet noise: since 1952. Theor Comput Fluid Dyn 10(1–4):393–405

    Article  MATH  MathSciNet  Google Scholar 

  • Tam CKW, Burton DE (1984) Sound generated by instability waves of supersonic flows. Parts 1 and 2. J Fluid Mech 138:273–295

    Article  MATH  MathSciNet  Google Scholar 

  • Tam CKW, Chen P (1994) Turbulent mixing noise from supersonic jets. AIAA J 32:1774

    MATH  Google Scholar 

  • Tam CKW, Morris PJ (1980) The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J Fluid Mech 98:349–381

    Article  MATH  MathSciNet  Google Scholar 

  • Tam CKW, Chen P, Seiner JM (1992) Relationship between instability waves and noise of high-speed jets. AIAA J 30:1747

    Google Scholar 

  • Tam CKZ, Golebiowski, Seiner JM (1996) On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 96–1716

  • Tanna HK (1977) An experimental study of jet noise. Part 1: turbulent mixing noise; Part II: shock associated noise. J Sound Vib 50:405–444

    Article  Google Scholar 

  • Tanna HK, Dean PD, Fisher MJ (1975) The influence of temperature on shock-free supersonic jet noise. J Sound Vib 39:429–460

    Article  Google Scholar 

  • Tester B, Morfey C (1976) Developments in jet noise modelling - theoretical predictions and comparisons with measured data. J Sound Vib 46(1)

  • Tinney CE, Coiffet F, Delville J, Glauser M, Jordan P, Hall A (2006a) Spectral linear stochastic estimation. Exp Fluids 41(5):763–775

    Article  Google Scholar 

  • Tinney CE, Jordan P, Guitton A, Delville J (2006b) A study in the near pressure field of co-axial subsonic jets. AIAA-2006-2589

  • Tinney CE, Jordan P, Hall A, Delville J, Glauser MN (2007) A time-resolved estimate of the turbulence and sound source mechanisms in a subsonic jet flow. J Turbulence 8(7):1–20

    Article  Google Scholar 

  • Viswanathan K (2002) Analysis of the two similarity components of turbulent mixing noise. AIAA J 40:1735–1744

    Google Scholar 

  • Viswanathan K (2004) Aeroacoustics of hot jets. J Fluid Mech 516:39–82

    Article  MATH  Google Scholar 

  • Viswanathan K, Shur ML, Spalart PR, Strelets M Kh (2006) Computation of the flow annd noise of round and beveled nozzles. In: Proceedings of 12th AIAA/CEAS aeroacoustics conference. Paper AIAA-2006-2445

  • Wang M, Freund JB, Lele SK (2006) Computational prediction of flow generated sound. Ann Rev Fluid Mech 38:483–512

    Article  MathSciNet  Google Scholar 

  • Wei M, Freund JB (2006) A noise controlled free shear flow. J Fluid Mech 546:123–152

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, P., Gervais, Y. Subsonic jet aeroacoustics: associating experiment, modelling and simulation. Exp Fluids 44, 1–21 (2008). https://doi.org/10.1007/s00348-007-0395-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0395-y

Keywords

Navigation