Skip to main content
Log in

The effect of blood acceleration on the ultrasound power Doppler spectrum

  • Acoustics of Living Systems. Biomedical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal–noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Hill, J. C. Bamber, and G. R. ter Haar, Physical Principles of Medical Ultrasonics (Wiley, 2004).

    Book  Google Scholar 

  2. L. Cuhna, I. Horvath, S. Ferreira, J. Lemos, P. Costa, D. L. F. Metello, Mol. Diagn. Ther. 18 (2), 153–173 (2014).

    Article  Google Scholar 

  3. R. W. Coatney, Inst. Lab. Anim. Res. J. 42 (3), 233–247 (2001).

    Article  Google Scholar 

  4. P. J. Fish, in Physical Principles of Medical Ultrasonics, Ed. by C. R. Hill (Ellis Horwood, Chichester, 1986), pp. 338–376.

  5. P. N. T. Wells, Eur. J. Ultrasound 7 (1), 3–8 (1998).

    Article  MathSciNet  Google Scholar 

  6. W. N. Hoskins and P. R. McDicken, Brit. J. Radiol. 70 (837), 878–890 (1997).

    Article  Google Scholar 

  7. D. Price, D. Wallbridge, and M. Stewart, Heart 84 (Suppl. 2), 11–18 (2000).

    Google Scholar 

  8. S. A. Girnyk, A. E. Barannik, V. V. Tovstiak, D. A. Tolstoluzhsky, and E. A. Barannik, Ultrasound Med Biol. 35 (5), 764–772 (2009).

    Article  Google Scholar 

  9. F.-B. Tian, L. Zhu, P.-W. Fok, and X.-Y. Lu, Computers in Biology and Medicine 43 (9), 1098–1113 (2013).

    Article  Google Scholar 

  10. J. Solano, M. Vasquez, E. Rubio, I. Sanchez, M. Fuentes, and F. Garcia-Nocetti, Physics Procedia 3 (1), 605–613 (2010).

    Article  ADS  Google Scholar 

  11. C.-K. Yen and P.-C. Li, Ultrasonic Imaging 24 (3), 135 (2002).

    Google Scholar 

  12. G. Cloutier, D. Chen, and L.-G. Durand, Ultrasound Med. Biol. 27 (4), 535–550 (2001).

    Article  Google Scholar 

  13. Y. Hua, L. Jia, L. Li, C. Ling, Z. Miao, and L. Jiao, Ultrasound Med. Biol. 37 (3), 358–363 (2011).

    Article  Google Scholar 

  14. D. N. Ku, Annu. Rev. Fluid Mech. 29, 399–434 (1997).

    Article  ADS  Google Scholar 

  15. K. Yared, P. Noseworthy, A. E. Weyman, E. McCabe, M. H. Picard, and A. L. Baggish, J. Am. Soc. Echocard. 24 (6), 687–692 (2011).

    Article  Google Scholar 

  16. L. M. Scoutt and E. G. Grant, in ARRS Categorical Course, 99 (2009).

  17. J. C. S. Cardoso, M. G. Ruano, and P. J. Fish, IEEE Trans. Biomed. Eng., 43 (12), 1176–1186 (1996).

    Article  Google Scholar 

  18. C. A. C. Bastos, P. J. Fish, and F. Vaz, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46 (5), 1201–1217 (1999).

    Article  Google Scholar 

  19. P. J. Fish, Ultrasound Med. Biol. 17 (2), 147–155 (1991).

    Article  Google Scholar 

  20. B. K. Novikov, O. V. Rudenko, and V.I. Timoshenko, Nonlinear Underwater Acoustics (New York, 1987).

    Google Scholar 

  21. E. A. Barannik, Acoust. Phys. 40 (2), 188–190 (1994).

    ADS  Google Scholar 

  22. E. A. Barannik, Acoust. Phys. 43 (4), 387–390 (1997).

    ADS  Google Scholar 

  23. E. A. Barannik, Ultrasonics 39 (4), 311–317 (2001).

    Article  Google Scholar 

  24. I. V. Skresanova and E.A. Barannik, Ultrasonics 52 (5), 676–684 (2012).

    Article  Google Scholar 

  25. A.G. Sveshnikov and A.N. Tikhonov, The Theory of Functions of a Complex Variable (Moscow: Mir, 1978) [in Russian].

    MATH  Google Scholar 

  26. S. L. Marple, Digital Spectral Analysis: With Applications (Prentice-Hall Series in Signal Processing, 1987).

    Google Scholar 

  27. C. A. C. Bastos, P. J. Fish, R. Steel, and F. Vaz, Ultrasonics 37 (9), 623–632 (2000).

    Article  Google Scholar 

  28. D. Vilkomerson, S. Ricci, and P. Tortoli, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 60 (10), 2079–2088 (2013).

    Article  Google Scholar 

  29. S. Ricci, R. Matera, and P. Tortoli, Ultrasonics 54 (7), 2006–2014 (2014).

    Article  Google Scholar 

  30. J. M. Gardin, C. S. Burn, W. J. Childs, and W.L. Henry, Am. Heart. J. 107 (2), 310–319 (1984).

    Article  Google Scholar 

  31. E. A. Barannik, A. A. Kulibaba, S. A. Girnyk, D. A. Tolstoluzhskiy, and I. V. Skresanova, J. Ultrasound Med. 31 (12), 1959–1972 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Matchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matchenko, O.S., Barannik, E.A. The effect of blood acceleration on the ultrasound power Doppler spectrum. Acoust. Phys. 63, 596–603 (2017). https://doi.org/10.1134/S1063771017050086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017050086

Keywords

Navigation