Skip to main content
Log in

Power spectrum and blood flow velocity images obtained by dual-beam backscatter laser Doppler velocimetry

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We developed a micro multipoint laser Doppler velocimeter (μ-MLDV) for noninvasive in-vivo measurements of blood flow and we presented the results of demonstrations performed on experimental animals. In this paper, we investigate the validity of power spectrum analysis for determining the flow velocity and the minimum power of the semiconductor laser in the μ-MLDV. Although average velocity is generally estimated from a peak position (f peak) in the power spectrum, the power spectrum of blood flow included an additional component in the high-frequency region. The conventional method for determining the average velocity of flows of transparent artificial fluids, which involves determining the average velocity from f peak, is unsuitable for in-vivo measurements of blood flow. The laser power was reduced from 140 to 30mW since 30mW was the minimum power at which images of blood flow velocity in microvessels could be obtained. About 30mW (power density of 15mW/mm2) is the maximum power which can be irradiated to humans. Further reduction in the laser power is necessary before this technique can be applied to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Bartlett and C. Y. She: Appl. Opt. 15 (1976) 1980.

    Article  ADS  Google Scholar 

  2. G. R. Grant and K. L. Orloff: Appl. Opt. 12 (1973) 2913.

    Article  ADS  Google Scholar 

  3. D. B. Brayton, H. T. Kalb, and F. L. Crosswy: Appl. Opt. 12 (1973) 1145.

    Article  ADS  Google Scholar 

  4. B. C. R. Ewan and J. Swithenbank: Meas. Sci. Technol. 5 (1994) 473.

    Article  ADS  Google Scholar 

  5. T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada: Exp. Fluids 24 (1998) 70.

    Article  Google Scholar 

  6. N. Furuichi, T. Hachiga, and M. Kumada: Exp. Fluids 36 (2004) 274.

    Article  Google Scholar 

  7. E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu: Opt. Commun. 245 (2005) 309.

    Article  ADS  Google Scholar 

  8. K. Maru, K. Kobayashi, and Y. Fujii: Opt. Express 18 (2010) 301.

    Article  ADS  Google Scholar 

  9. C. Riva, B. Ross, and G. B. Benedek: Invest. Ophthalmol. Visual Sci. 11 (1972) 936.

    Google Scholar 

  10. T. Tanaka, C. Riva, and I. Ben-Sira: Science 186 (1974) 830.

    Article  ADS  Google Scholar 

  11. T. Tanaka and G. B. Benedek: Appl. Opt. 14 (1975) 189.

    Article  ADS  Google Scholar 

  12. T. Eiju, K. Matsuda, J. Ohtsubo, K. Honma, and K. Shimizu: Appl. Opt. 20 (1981) 3833.

    Article  ADS  Google Scholar 

  13. T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, and K. Shimizu: Opt. Eng. 32 (1993) 15.

    Article  ADS  Google Scholar 

  14. H. Ishida, T. Andoh, S. Akiguchi, T. Hachiga, M. Ishizuka, T. Shimizu, H. Shirakawa, and Y. Kuraishi: Jpn. J. Appl. Phys. 51 (2012) 032701.

    Article  ADS  Google Scholar 

  15. S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama: Meas. Sci. Technol. 23 (2012) 045702.

    Article  ADS  Google Scholar 

  16. J. Kaneko, Y. Sugawara, Y. Matsui, H. Sakata, and N. Kokudo: J. Invest. Surg. 22 (2009) 268.

    Article  Google Scholar 

  17. T. Tajikawa, M. Takeshige, W. Ishihara, S. Kohri, and K. Ohba: J. Fluid Sci. Technol. 4 (2009) 62.

    Article  Google Scholar 

  18. K. Dörschel and G. Müller: Flow Meas. Instrum. 7 (1996) 257.

    Article  Google Scholar 

  19. K. Dörschel and G. Müller: Laser Phys. 9 (1999) 363.

    Google Scholar 

  20. D. Watkins and G. A. Holloway: IEEE Trans. Biomed. Eng. 25 (1978) 28.

    Article  Google Scholar 

  21. R. Bonner and R. Nossal: Appl. Opt. 20 (1981) 2097.

    Article  ADS  Google Scholar 

  22. G. E. Nilsson: Med. Biol. Eng. Comput. 22 (1984) 343.

    Article  Google Scholar 

  23. C. Strohmaier, R. M. Werkmeister, B. Bogner, C. Runge, F. Schroedl, H. Brandtner, W. Radner, L. Schmetterer, J. W. Kiel, G. Grabner, and H. A. Reitsamer: Exp. Eye Res. 92 (2011) 545.

    Article  Google Scholar 

  24. H. S. Hou and H. Andrews: IEEE Trans. Acoust. Speech Signal Process. 26 (1978) 508.

    Article  ADS  MATH  Google Scholar 

  25. C. Runge: Z. Math. Phys. 46 (1901) 224 [in German].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, H., Yasue, Y., Hachiga, T. et al. Power spectrum and blood flow velocity images obtained by dual-beam backscatter laser Doppler velocimetry. OPT REV 21, 461–467 (2014). https://doi.org/10.1007/s10043-014-0071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0071-4

Keywords

Navigation