Skip to main content
Log in

Comparative Study of LQU and LQFI Measures of Quantum Correlations in Two-Spin-1/2 Heisenberg Systems

  • QUANTUM INFORMATICS: COMPUTING
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Many measures of quantum correlations have been introduced so far, and now their properties are carefully studied both theoretically and experimentally. The most important among them are quantum entanglement and quantum discord. Recently, it was shown that the Wigner–Yanase skew information and quantum Fisher information also can serve as measures of nonclassical correlations. These discordlike measures are called local quantum uncertainty (LQU) and interferometric power or local quantum Fisher information (LQFI), correspondingly. In this paper the behavior of LQU and LQFI is considered at thermal equilibrium of the two-qubit Heisenberg models in the absence and presence of an external magnetic field; these cases correspond to the Bell-diagonal and general X states, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. However, “it is important to realize that in physics today, we have no knowledge of what the energy is” [7]).

  2. Earlier, a similar definition was proposed by Everett for the canonical correlation [11]).

REFERENCES

  1. Preskill, J., Lecture Notes for Physics 229: Quantum Information and Computation, California Institute of Technology, 1998. http://web.gps.caltech.edu/~rls/book.pdf.

  2. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 2002, vol. 74, no. 1, pp. 145–195. https://doi.org/10.1103/revmodphys.74.145

    Article  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., and Vedral, V., Entanglement in many-body systems, Rev. Mod. Phys., 2008, vol. 80, no. 2, pp. 517–576. https://doi.org/10.1103/revmodphys.80.517

    Article  MathSciNet  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 2009, vol. 81, no. 2, pp. 865–942. https://doi.org/10.1103/revmodphys.81.865

    Article  MathSciNet  Google Scholar 

  6. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, P.K., Bachor, H.A., Andersen, U.L., and Leuchs, G., Colloquium: The Einstein−Podolsky−Rosen paradox: From concepts to applications, Rev. Mod. Phys., 2009, vol. 81, no. 4, pp. 1727–1751. https://doi.org/10.1103/revmodphys.81.1727

    Article  MathSciNet  Google Scholar 

  7. Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics, Reading, Mass.: Addison-Wesley, 1964, vols. 1, Section 4–1.

  8. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., and Wootters, W.K., Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, vol. 76, no. 5, p. 722. https://doi.org/10.1103/PhysRevLett.76.722

    Article  Google Scholar 

  9. Bennett, C.H., Bernstein, H.J., Popescu, S., and Schumacher, B., Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, vol. 53, no. 4, pp. 2046–2052. https://doi.org/10.1103/physreva.53.2046

    Article  Google Scholar 

  10. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., and Wootters, W.K., Mixed-state entanglement and quantum error correction, Phys. Rev. A, 1996, vol. 54, no. 5, pp. 3824–3851. https://doi.org/10.1103/physreva.54.3824

    Article  MathSciNet  Google Scholar 

  11. Everett III, H., The theory of the universal wave function, The Many Worlds Interpretation of Quantum Mechanics, DeWitt, B.S. and Graham, N., Eds., Princeton, N.J.: Princeton Univ. Press, 1973, pp. 1–140. https://doi.org/10.1515/9781400868056-002

  12. Knill, E. and Laflamme, R., Power of one bit of quantum information, Phys. Rev. Lett., 1998, vol. 81, no. 25, pp. 5672–5675. https://doi.org/10.1103/physrevlett.81.5672

    Article  Google Scholar 

  13. Zurek, W.H., Einselection and decoherence from an information theory perspective, Ann. Phys., 2000, vol. 9, nos. 11–12, pp. 855–864. https://doi.org/10.1002/1521-3889(200011)9:11/12<855::aid-andp855>3.0.co;2-k

    Article  MathSciNet  Google Scholar 

  14. Ollivier, H. and Zurek, W.H., Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett., 2001, vol. 88, no. 1. https://doi.org/10.1103/physrevlett.88.017901

  15. Henderson, L. and Vedral, V., Classical, quantum and total correlations, J. Phys. A: Math. Gen., 2001, vol. 34, no. 35, pp. 6899–6905. https://doi.org/10.1088/0305-4470/34/35/315

    Article  MathSciNet  Google Scholar 

  16. Vedral, V., Classical correlations and entanglement in quantum measurements, Phys. Rev. Lett., 2003, vol. 90, no. 5, p. 050401. https://doi.org/10.1103/physrevlett.90.050401

    Article  Google Scholar 

  17. Datta, A., Studies on the role of entanglement in mixed-state quantum computation, PhD Dissertation, Albuquerque: Univ. of New Mexico, 2008. https://doi.org/10.48550/arXiv.0807.4490

  18. Datta, A., Shaji, A., and Caves, C.M., Quantum discord and the power of one qubit, Phys. Rev. Lett., 2008, vol. 100, no. 5, p. 050502. https://doi.org/10.1103/physrevlett.100.050502

    Article  Google Scholar 

  19. Merali, Z., Quantum computing: The power of discord, Nature, 2011, vol. 474, no. 7349, pp. 24–26. https://doi.org/10.1038/474024a

    Article  Google Scholar 

  20. Modi, K., Brodutch, A., Cable, H., Paterek, T., and Vedral, V., Quantum discord and other measures of quantum correlation, arXiv Preprint, 2011. https://doi.org/10.48550/arXiv.1112.6238

  21. Modi, K., Brodutch, A., Cable, H., Paterek, T., and Vedral, V., The classical-quantum boundary for correlations: Discord and related measures, Rev. Mod. Phys., 2012, vol. 84, no. 4, pp. 1655–1707. https://doi.org/10.1103/revmodphys.84.1655

    Article  Google Scholar 

  22. Aldoshin, S.M., Fel’dman, E.B., and Yurishchev, M.A., Quantum entanglement and quantum discord in magnetoactive materials (review article), Low Temp. Phys., 2014, vol. 40, no. 1, pp. 3–16. https://doi.org/10.1063/1.4862469

    Article  Google Scholar 

  23. Streltsov, A., Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory, SpringerBriefs in Physics, Berlin: Springer, 2015. https://doi.org/10.1007/978-3-319-09656-8

  24. Życzkowski, K., Horodecki, P., Sanpera, A., and Lewenstein, M., Volume of the set of separable states, Phys. Rev. A, 1998, vol. 58, no. 2, pp. 883–892. https://doi.org/10.1103/physreva.58.883

    Article  MathSciNet  Google Scholar 

  25. Yu, T. and Eberly, J.H., Sudden death of entanglement, Science, 2009, vol. 323, no. 5914, pp. 598–601. https://doi.org/10.1126/science.1167343

    Article  MathSciNet  Google Scholar 

  26. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., and Acín, A., Almost all quantum states have nonclassical correlations, Phys. Rev. A, 2010, vol. 81, no. 5, p. 052318. https://doi.org/10.1103/physreva.81.052318

    Article  Google Scholar 

  27. Werlang, T. and Rigolin, G., Thermal and magnetic quantum discord in Heisenberg models, Phys. Rev. A, 2010, vol. 81, no. 4, p. 044101. https://doi.org/10.1103/physreva.81.044101

    Article  Google Scholar 

  28. Guo, J., Mi, Yi., Zhang, J., and Song, H., Thermal quantum discord of spins in an inhomogeneous magnetic field, J. Phys. B: At., Mol. Opt. Phys., 2011, vol. 44, no. 6, p. 065504. https://doi.org/10.1088/0953-4075/44/6/065504

    Article  Google Scholar 

  29. Campbell, S., Richens, J., Gullo, N.L., and Busch, T., Criticality, factorization, and long-range correlations in the anisotropic XY-model, Phys. Rev. A, 2013, vol. 88, no. 6, p. 062305. https://doi.org/10.1103/physreva.88.062305

    Article  Google Scholar 

  30. Moreva, E., Gramegna, M., and Yurischev, M.A., Exploring quantum correlations from discord to entanglement, Adv. Sci., Eng. Med., 2017, vol. 9, no. 1, pp. 46–52. https://doi.org/10.1166/asem.2017.1966

    Article  Google Scholar 

  31. Adesso, G., Bromley, T.R., and Cianciaruso, M., Measures and applications of quantum correlations, J. Phys. A: Math. Theor., 2016, vol. 49, no. 47, p. 473001. https://doi.org/10.1088/1751-8113/49/47/473001

    Article  MathSciNet  Google Scholar 

  32. Bera, A., Das, T., Sadhukhan, D., Singha Roy, S., Sen(de), A., and Sen, U., Quantum discord and its allies: A review of recent progress, Rep. Prog. Phys., 2018, vol. 81, no. 2, p. 024001. https://doi.org/10.1088/1361-6633/aa872f

    Article  Google Scholar 

  33. Brodutch, A. and Terno, D.R., Why should we care about quantum discord?, Lectures on General Quantum Correlations and Their Applications, Fanchini, F.F., Soares-Pinto, D.O., and Adesso, G., Eds., Quantum Science and Technology, Berlin: Springer, 2017, pp. 183–199. https://doi.org/10.1007/978-3-319-53412-1_8

  34. Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., Rinkoski, M.T., Smith, C.T., and Wet al.poon, T.D., Nine formulations of quantum mechanics, Am. J. Phys., 2002, vol. 70, no. 3, pp. 288–297. https://doi.org/10.1119/1.1445404

    Article  Google Scholar 

  35. Gilorami, D., Tufarelli, T., and Adesso, G., Characterizing nonclassical correlations via local quantum uncertainty, Phys. Rev. Lett., 2013, vol. 110, no. 24, p. 240402. https://doi.org/10.1103/PhysRevLett.110.240402

    Article  Google Scholar 

  36. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., and Adesso, G., Quantum discord determines the interferometric power of quantum states, Phys. Rev. Lett., 2014, vol. 112, no. 21, p. 210401. https://doi.org/10.1103/physrevlett.112.210401

    Article  Google Scholar 

  37. Fedorova, A.V. and Yurischev, M.A., Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions, Quantum Inf. Process., 2022, vol. 21, no. 3, p. 92. https://doi.org/10.1007/s11128-022-03427-7

    Article  MathSciNet  Google Scholar 

  38. Yurischev, M.A. and Haddadi, S., Local quantum Fisher information and local quantum uncertainty for general X states, Phys. Lett. A, 2023, vol. 476, p. 128868. https://doi.org/10.1016/j.physleta.2023.128868

    Article  MathSciNet  Google Scholar 

  39. Yurischev, M.A., On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions, Quantum Inf. Process., 2020, vol. 19, no. 9, p. 336. https://doi.org/10.1007/s11128-020-02835-x

    Article  MathSciNet  Google Scholar 

  40. Wigner, E.P. and Yanase, M.M., Information contents of distributions, Proc. Natl. Acad. Sci. U. S. A., 1963, vol. 49, no. 6, pp. 910–918. https://doi.org/10.1073/pnas.49.6.910

    Article  MathSciNet  Google Scholar 

  41. Luo, S., Wigner–Yanase skew information and uncertainty relations, Phys. Rev. Lett., 2003, vol. 91, no. 18, p. 180403. https://doi.org/10.1103/physrevlett.91.180403

    Article  Google Scholar 

  42. Holevo, A., Probabilistic and Statistical Aspects of Quantum Theory, Amsterdam: North-Holland, 1982.

    Google Scholar 

  43. Braunstein, S.L. and Caves, C.M., Statistical distance and the geometry of quantum states, Phys. Rev. Lett., 1994, vol. 72, no. 22, pp. 3439–3443. https://doi.org/10.1103/physrevlett.72.3439

    Article  MathSciNet  Google Scholar 

  44. Paris, M.G.A., Quantum estimation for quantum technology, Int. J. Quantum Inf., 2009, vol. 7, suppl. 1, pp. 125–137. https://doi.org/10.1142/s0219749909004839

    Article  Google Scholar 

  45. Liu, J., Yuan, H., Lu, X., and Wang, X., Quantum Fisher information matrix and multiparameter estimation, J. Phys. A: Math. Theor., 2020, vol. 53, no. 2, p. 023001. https://doi.org/10.1088/1751-8121/ab5d4d

    Article  MathSciNet  Google Scholar 

  46. Luo, S., Quantum discord for two-qubit systems, Phys. Rev. A, 2008, vol. 77, no. 4, p. 042303. https://doi.org/10.1103/physreva.77.042303

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am very grateful to V.P. Kudrya for his help in the work.

Funding

This research was supported in part by a state task, the state registration number of the Russian Federation is AAAAA19-119071190017-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yurischev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurischev, M.A. Comparative Study of LQU and LQFI Measures of Quantum Correlations in Two-Spin-1/2 Heisenberg Systems. Russ Microelectron 52 (Suppl 1), S412–S418 (2023). https://doi.org/10.1134/S1063739723600176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600176

Keywords:

Navigation