Skip to main content
Log in

Genome Duplications as the Basis of Vertebrates’ Evolutionary Success

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Vertebrates, often considered as the most sophisticatedly organized animals, have a number of unique morphological features that ensured their evolutionary stability and success. Many have argued that the genetic basis for these innovations was provided by the genome duplications occurred at the early stages of vertebrate evolution. One of the important results of genome duplication is the emergence of additional copies of regulatory genes. Having been removed from the constraining pressure of natural selection, these copies acquired an opportunity to modify their structure and functions, influencing the organism’s development and morphology. The consequence of ancient genomic duplications is, for example, that about 35% of human genes are represented by at least two homologous copies. The idea of genome duplications occurred at the early stages of vertebrate evolution was first proposed in 1970, but questions about the number, the scale (whole-genome or local) and the evolutionary timing of these duplications are still actively debated. In recent years (2018–2020), due to the rapid development of methods for processing of big data of high-throughput genome sequencing in different lineages of vertebrates and their closest relatives, cephalochordates and tunicates, a number of comparative studies aimed at identifying groups of syntheny in genomes of different evolutionary lines and reconstruction of ancestral vertebrate chromosomes were obtained. As a result, several models describing putative scenarios of genome duplications in vertebrate evolution have been proposed. In parallel, detailed laboratory studies focused on the expression and functional properties of different families of regulatory genes were performed for representatives of several vertebrate groups. In these studies, a plethora of new information on the molecular mechanisms of the embryonic development in hitherto poorly studied representatives of the evolutionarily ancient vertebrate linages (e.g. cyclostomes, cartilaginous fishes and sturgeons) have been collected. In this review, we consider modern concepts of the mechanisms and consequences of genomic duplications in the light of recent experimental data and currently proposed models of vertebrate genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Adachi, N., Robinson, M., Goolsbee, A., et al., Regulatory evolution of Tbx5 and the origin of paired appendages, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 36, pp. 10115–10120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albertin, C.B., Simakov, O., Mitros, T., et al., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, pp. 220–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexandrou, M.A., Swartz, B.A., Matzke, N.J., et al., Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae, Mol. Phylogenet. Evol., 2013, vol. 69, pp. 514–523.

    Article  CAS  PubMed  Google Scholar 

  4. Amores, A., Force, A., Yan, Y.L., et al., Zebrafish hox clusters and vertebrate genome evolution, Science, 1998, vol. 282, pp. 1711–1714.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, K.G., Nissen, J.K., and Betz, A.G., Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution, Front. Immunol., 2012, vol. 3, p. 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bassham, S., Canestro, C., and Postlethwait, J.H., Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages, BMC Biol., 2008, vol. 6, no. 1, p. 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bayramov, A.V., Eroshkin, F.M., Martynova, N.Y., et al., Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling, Development, 2011, vol. 138, pp. 5345–5356.

    Article  CAS  PubMed  Google Scholar 

  8. Blomme, T., Vandepoele, K., de Bodt, S., et al., The gain and loss of genes during 600 million years of vertebrate evolution, Genome Biol., 2006, vol. 7, p. R43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Braasch, I., Salzburger, W., and Meyer, A., Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration, Mol. Biol. Evol., 2006, vol. 23, pp. 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  10. Braasch, I., Gehrke, A.R., Smith, J.J., et al., The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons, Nat. Genet., 2015, vol. 47, pp. 427–437.

    CAS  Google Scholar 

  11. Brazeau, M.D. and Friedman, M., The origin and early phylogenetic history of jawed vertebrates, Nature, 2015, vol. 520, pp. 490–497.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brunet, F.G., Roest Crollius, H., Paris, M., et al., Gene loss and evolutionary rates following whole-genome duplication in teleost fishes, Mol. Biol. Evol., 2006, vol. 23, pp. 1808–1816.

    Article  CAS  PubMed  Google Scholar 

  13. Campanini, E.B., Vandewege, M.W., Pillai, N.E., et al., Early evolution of vertebrate Mybs: an integrative perspective combining synteny, phylogenetic, and gene expression analyses, Genome Biol. Evol., 2015, vol. 7, no. 11, pp. 3009–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardoso, J.C.R., Bergqvist, C.A., Felix, R.C., et al., Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages, J. Mol. Endocrinol., 2016, vol. 57, pp. 73–86.

    Article  CAS  PubMed  Google Scholar 

  15. Cardoso, J.C.R., Bergqvist, C.A., and Larhammar, D., Corticotropin-releasing hormone (CRH) gene family duplications in lampreys correlate with two early vertebrate genome doublings, Front. Neurosci., 2020, vol. 14, p. 672.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carroll, S.B., Homeotic genes and the evolution of arthropods and chordates, Nature, 1995, vol. 376, pp. 479–485.

    Article  CAS  PubMed  Google Scholar 

  17. Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution, Cell, 2008, vol. 134, no. 1, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

  18. Chambers, K.E., McDaniell, R., Raincrow, J.D., et al., Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha), Theory Biosci., 2009, vol. 128, pp. 109–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christensen, K.A. and Davidson, W.S., Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar), PLoS One, 2017, vol. 12, no. 2. e0173053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ciomborowska, J., Rosikiewicz, W., Szklarczyk, D., et al., “Orphan” retrogenes in the human genome, Mol. Biol. Evol., 2013, vol. 30, pp. 384–396.

    Article  CAS  PubMed  Google Scholar 

  21. Coates, M., The evolution of paired fins, Theory Biosci., 2003, vol. 122, nos. 2–3, pp. 266–287.

    Article  Google Scholar 

  22. Coffill, C.R., Lee, A.P., Siau, J.W., et al., The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans, Genes Dev., 2016, vol. 30, no. 3, pp. 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coffill, C.R., Lee, A.P., Siau, J.W., et al., The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans, Genes Dev., 2016, vol. 30, pp. 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conant, G.C. and Wolfe, K.H., Increased glycolytic flux as an outcome of whole-genome duplication in yeast, Mol. Syst. Biol., 2007, vol. 3, p. 129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dahn, R.D., Davis, M.C., Pappano, W.N., et al., Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning, Nature, 2007, vol. 445, pp. 311–314.

    Article  CAS  PubMed  Google Scholar 

  26. Dale, L. and Slack, J.M.W., Regional specification within the mesoderm of early embryos of Xenopus laevis, Development, 1987, vol. 100, pp. 279–295.

    Article  CAS  PubMed  Google Scholar 

  27. Davis, C.A., Holmyard, D.P., Millen, K.J., et al., Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum, Development, 1991, vol. 111, no. 2, pp. 287–298.

    Article  CAS  PubMed  Google Scholar 

  28. Dehal, P. and Boore, J.L., Two rounds of whole genome duplication in the ancestral vertebrate, PLoS Biol., 2005, vol. 3, no. 10. e314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. DesMarais, D.L. and Rausher, M.D., Escape from adaptive conflict after duplication in an anthocyanin pathway gene, Nature, 2008, vol. 454, pp. 762–765.

    Article  CAS  Google Scholar 

  30. Donoghue, P.C. and Keating, J.N., Early vertebrate evolution, Palaeontology, 2014, vol. 57, pp. 879–893.

    Article  Google Scholar 

  31. Donoghue, P.C.J. and Purnell, M.A., Genome duplication, extinction and vertebrate evolution, Trends Ecol. Evol., 2005, vol. 20, pp. 312–319.

    Article  PubMed  Google Scholar 

  32. Douard, V., Brunet, F., Boussau, B., et al., The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?, BMC Evol. Biol., 2008, vol. 8, p. 336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Du, K., Stöck, M., Kneitz, S., et al., The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization, Nat. Ecol. Evol., 2020, vol. 4, no. 6, pp. 841–852.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duboule, D., The rise and fall of hox gene clusters, Development, 2007, vol. 134, pp. 2549–2560.

    Article  CAS  PubMed  Google Scholar 

  35. Duboule, D. and Dolle, P., The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes, EMBO J., 1989, vol. 8, pp. 1497–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., et al., Discovery of four Noggin genes in lampreys suggests two rounds of ancient genome duplication, Commun. Biol., 2020, vol. 3, no. 1, p. 532.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., et al., Comparative analysis of expression patterns of genes of the Noggin family at early stages of development of the head structures of the European river lamprey Lampetra fluviatilis, Russ. J. Dev. Biol., 2021, vol. 52, no. 1, pp. 1–10.

    Article  Google Scholar 

  38. Eroshkin, F.M., Ermakova, G.V., Bayramov, A.V., et al., Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis, Gene Expr. Patterns, 2006, vol. 6, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  39. Faas, L. and Isaacs, H.V., Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis, Dev. Dyn., 2009, vol. 238, pp. 835–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fletcher, R.B., Watson, A.L., and Harland, R.M., Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod, Gene Expr. Patterns, 2004, vol. 5, pp. 225–230.

    Article  CAS  PubMed  Google Scholar 

  41. Flot, J.-F., Hespeels, B., Li, X., et al., Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga, Nature, 2013, vol. 500, pp. 453–457.

    Article  CAS  PubMed  Google Scholar 

  42. Force, A., Lynch, M., Pickett, F.B., et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, vol. 151, pp. 1531–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forstmeier, W. and Ellegren, H., Trisomy and triploidy are sources of embryo mortality in the zebra finch, Proc. Biol. Sci., 2010, vol. 277, no. 1694, pp. 2655–2660.

  44. Freeling, M., The evolutionary position of subfunctionalization, downgraded, Genome Dyn., 2008, vol. 4, pp. 25–40.

    Article  CAS  PubMed  Google Scholar 

  45. Furlong, R.F. and Holland, P.W.H., Were vertebrates octoploid?, Philos. Trans. R. Soc., B, 2002, vol. 357, pp. 531–544.

  46. Futahashi, R., Kawahara-Miki, R., Kinoshita, M., et al., Extraordinary diversity of visual opsin genes in dragonflies, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. E1247–E1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gans, C. and Northcutt, R.G., Neural crest and the origin of vertebrates: a new head, Science (Washington, D.C.), 1983, vol. 220, pp. 268–274.

    Article  CAS  Google Scholar 

  48. Gee, H., Across the Bridge: Understanding the Origin of the Vertebrates, Chicago: University of Chicago Press, 2018.

    Book  Google Scholar 

  49. Gilbert, S.F., Developmental Biology, Sunderland: Sinauer Associates, 2006, 9th ed.

    Google Scholar 

  50. Glasauer, S.M. and Neuhauss, S.C., Whole-genome duplication in teleost fishes and its evolutionary consequences, Mol. Genet. Genomics, 2014, vol. 289, no. 6, pp. 1045–1060.

    Article  CAS  PubMed  Google Scholar 

  51. Goode, D.K. and Elgar, G., The PAX258 gene subfamily: a comparative perspective, Dev. Dyn., 2009, vol. 238, no. 12, pp. 2951–2974.

    Article  CAS  PubMed  Google Scholar 

  52. Graham, A., Papalopulu, N., and Krumlauf, R., The murine and Drosophila homeobox gene complexes have common features of organization and expression, Cell, 1989, vol. 57, pp. 367–378.

    Article  CAS  PubMed  Google Scholar 

  53. Green, S.A. and Bronner, M.E., The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits, Differentiation, 2014, vol. 87, pp. 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Green, S.A., Simoes-Costa, M., and Bronner, M., Evolution of vertebrates as viewed from the crest, Nature, 2015, vol. 520, pp. 474–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guerreiro, I., Nunes, A., Woltering, J.M., et al., Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 26, pp. 10682–10686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, B., Gan, X., and He, S., Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts, J. Exp. Zool., 2009, vol. 15.

  57. Gutierrez-Mazariegos, J., Kumar, E., Studer, R.A., et al., Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering, R. Soc. Open Sci., 2016, vol. 3, no. 3, p. 150484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hall, B.K., The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution, New York: Springer, 2008.

    Google Scholar 

  59. Havelka, M., Hulák, M., Bailie, D., et al., Extensive genome duplications in sturgeons: new evidence from microsatellite data, J. Appl. Ichthyol., 2013, vol. 29, pp. 704–708.

    Article  Google Scholar 

  60. Heimberg, A.M., Cowper-Sal-Lari, R., Sémon, M., et al., microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 19379–19383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Henkel, C.V., Burgerhout, E., de Wijze, D.L., et al., Primitive duplicate hox clusters in the European eel’s genome, PLoS One, 2012, vol. 7. e32231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holland, P., Gene duplication: past, present and future, Semin. Cell. Biol., 1999, vol. 10, pp. 541–547.

    Article  CAS  Google Scholar 

  63. Holland, L.Z., Evolution of new characters after whole genome duplications: insights from amphioxus, Semin. Cell. Dev. Biol., 2013, vol. 24, no. 2, pp. 101–109.

    Article  CAS  PubMed  Google Scholar 

  64. Holland, L.Z. and Ocampo Daza, D., A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution?, Genome Biol., 2018, vol. 19, no. 1, p. 209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hufton, A.L., Mathia, S., Braun, H., et al., Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention, Genome Res., 2009, vol. 19, pp. 2036–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hughes, A.L., The evolution of functionally novel proteins after gene duplication, Proc. Biol. Sci., 1994, vol. 256, pp. 119–124.

    Article  CAS  PubMed  Google Scholar 

  67. Innan, H. and Kondrashov, F., The evolution of gene duplications: classifying and distinguishing between models, Nat. Rev. Genet., 2010, vol. 11, no. 2, pp. 97–108.

    Article  CAS  PubMed  Google Scholar 

  68. Jaillon, O., Aury, J.M., Brunet, F., et al., Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype, Nature, 2004, vol. 431, no. 7011, pp. 946–957.

    Article  PubMed  Google Scholar 

  69. Janvier, P., The dawn of the vertebrates: characters versus common ascent in the rise of current vertebrate phylogenies, Palaeontology, 1996, vol. 39, pp. 259–287.

    Google Scholar 

  70. Janvier, P., Vertebrate characters and the Cambrian vertebrates, C.R. Palevol., 2003, vol. 2, pp. 523–531.

    Article  Google Scholar 

  71. Janvier, P., Facts and fancies about early fossil chordates and vertebrates, Nature, 2015, vol. 520, no. 7548, pp. 483–489.

    Article  CAS  PubMed  Google Scholar 

  72. Joyner, A.L. and Martin, G.R., En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis, Genes Dev., 1987, vol. 1, no. 1, pp. 29–38.

    Article  CAS  PubMed  Google Scholar 

  73. Kassahn, K.S., Dang, V.T., Wilkins, S.J., et al., Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates, Genome Res., 2009, vol. 19, pp. 1404–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kenny, N.J., Chan, K.W., Nong, W., et al., Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs, Heredity (Edinb.), 2016, vol. 116, no. 2, pp. 190–199.

    Article  CAS  Google Scholar 

  75. Kim, C.B., Amemiya, C., Bailey, W., et al., Hox cluster genomics in the horn shark, Heterodontus francisci, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 1655–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kimura, M. and King, J.L., Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 2858–2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klimova, L. and Kozmik, Z., Stage-dependent requirement of neuroretinal pax6 for lens and retina development, Development, 2014, vol. 141, pp. 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  78. Kmita, M. and Duboule, D., Organizing axes in time and space; 25 years of collinear tinkering, Science, 2003, vol. 301, pp. 331–333.

    Article  CAS  PubMed  Google Scholar 

  79. Kondrashov, F.A., Rogozin, I.B., Wolf, Y.I., et al., Selection in the evolution of gene duplications, Genome Biol., 2002, vol. 3. research0008.1–0008.9.

  80. Kondrashov, F.A. and Koonin, E.V., A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplication, Trends Genet., 2004, vol. 20, pp. 287–291.

    Article  CAS  PubMed  Google Scholar 

  81. Kozmik, Z., Holland, N.D., Kalousova, A., et al., Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region, Development, 1999, vol. 126, pp. 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  82. Krumlauf, R., Hox genes in vertebrate development, Cell, 1994, vol. 78, pp. 191–201.

    Article  CAS  PubMed  Google Scholar 

  83. Kuraku, S. and Kuratani, S., Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences, Zool. Sci., 2006, vol. 23, pp. 1053–1064.

    Article  CAS  Google Scholar 

  84. Kuraku, S. and Meyer, A., The evolution and maintenance of hox gene clusters in vertebrates and the teleost-specific genome duplication, Int. J. Dev. Biol., 2009, vol. 53, pp. 765–773.

    Article  CAS  PubMed  Google Scholar 

  85. Kuraku, S., Meyer, A., and Kuratani, S., Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after?, Mol. Biol. Evol., 2009, vol. 26, no. 1, pp. 47–59.

    Article  CAS  PubMed  Google Scholar 

  86. Kuratani, S., Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty, J. Anat., 2004, vol. 205, pp. 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuratani, S. and Ota, K.G., Hagfish (Cyclostomata, Vertebrata): searching for the ancestral developmental plan of vertebrates, BioEssays, 2008, vol. 30, pp. 167–172.

    Article  PubMed  Google Scholar 

  88. Lagman, D., Ocampo Daza, D., Widmark, J., et al., The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications, BMC Evol Biol., 2013, vol. 13, no. 1, p. 238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lamb, T.M., Knecht, A.K., Smith, W.C., et al., Neural induction by secreted polypeptide noggin, Science, 1993, vol. 262, pp. 713–718.

    Article  CAS  PubMed  Google Scholar 

  90. Li, W.H., Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes, Genetics, 1980, vol. 95, pp. 237–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lowe, C.J. and Clarke, D.N., Medeiros et al., The deuterostome context of chordate origins, Nature, 2015, vol. 520, pp. 456–465.

    Article  CAS  PubMed  Google Scholar 

  92. Lynch, M. and Force, A., The probability of duplicate gene preservation by subfunctionalization, Genetics, 2000, vol. 154, pp. 459–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lynch, M., O’Hely, M., Walsh, B., et al., The probability of preservation of a newly arisen gene duplicate, Genetics, 2001, vol. 159, pp. 1789–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mable, B., “Why polyploidy is rarer in animals than in plants”: myths and mechanisms, Biol. J. Linn. Soc., 2004, vol. 82, pp. 453–466.

    Article  Google Scholar 

  95. Macqueen, D.J. and Johnston, I.A., A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification, Proc. Biol. Sci., 2014, vol. 281, no. 1778, p. 20132881.

  96. Mallo, M., Wellik, D.M., and Deschamps, J., Hox genes and regional patterning of the vertebrate body plan, Dev. Biol., 2010, vol. 344, pp. 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Manousaki, T., Qiu, H., Noro, M., et al., Molecular evolution in the lamprey genomes and its relevance to the timing of whole genome duplications, in Jawless Fishes of the World, Orlov, A. and Beamish, R., Eds., Newcastle upon Tyne: Cambridge Scholars Publishing, 2011, vol. 1, pp. 2–16.

    Google Scholar 

  98. Manousaki, T., Feiner, N., Begemann, G., et al., Co-orthology of pax4 and pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses, Evol. Dev., 2011, vol. 13, pp. 448–459.

    Article  CAS  PubMed  Google Scholar 

  99. Martin, K.J. and Holland, P.W., Enigmatic orthology relationships between hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication, Mol. Biol. Evol., 2014, vol. 31, no. 10, pp. 2592–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Matsushita, T., Yamaoka, T., Otsuka, S., et al., Molecular cloning of mouse paired-box-containing gene (Pax)-4 from an islet b cell line and deduced sequence of human Pax-4, Biochem. Biophys. Res. Commun., 1998, vol. 242, pp. 176–180.

    Article  CAS  PubMed  Google Scholar 

  101. McCauley, D.W. and Bronner-Fraser, M., Conservation of Pax gene expression in ectodermal placodes of the lamprey, Gene, 2002, vol. 287, nos. 1–2, pp. 129–139.

    Article  CAS  PubMed  Google Scholar 

  102. McCauley, D.W., Docker, M.F., Whyard, S., et al., Lampreys as diverse model organisms in the genomics era, BioScience, 2015, vol. 65, pp. 1046–1056.

    Article  PubMed  PubMed Central  Google Scholar 

  103. McEwen, G.K., Goode, D.K., Parker, H.J., et al., Early evolution of conserved regulatory sequences associated with development in vertebrates, PLoS Genet., 2009, vol. 5.

  104. Mehta, T.K., Ravi, V., Yamasaki, S., et al., Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum), Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 16044–16049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Menke, D.B., Guenther, C., and Kingsley, D.M., Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs, Development, 2008, vol. 135, no. 15, pp. 2543–2553.

    Article  CAS  PubMed  Google Scholar 

  106. Meyer, A. and Van de Peer, Y., From 2R to 3R: evidence for a fish-specific genome duplication (FSGD), BioEssays, 2005, vol. 27, no. 9, pp. 937–945.

    Article  CAS  PubMed  Google Scholar 

  107. Minguillon, C., Nishimoto, S., Wood, S., et al., Hox genes regulate the onset of Tbx5 expression in the forelimb, Development, 2012, vol. 139, no. 17, pp. 3180–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miyashita, T., Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement, Biol. Rev., 2016, vol. 91, pp. 611–657.

    Article  PubMed  Google Scholar 

  109. Moreau, M. and Leclerc, C., The choice between epidermal and neural fate: a matter of calcium, Int. J. Dev. Biol., 2004, vol. 48, nos. 2–3, pp. 75–84.

    Article  CAS  PubMed  Google Scholar 

  110. Moriyama, Y. and Koshiba-Takeuchi, K., Significance of whole-genome duplications on the emergence of evolutionary novelties, Brief. Funct. Genomics, 2018, vol. 17, no. 5, pp. 329–338.

    Article  CAS  PubMed  Google Scholar 

  111. Morris, S.C. and Caron, J.-B., A primitive fish from the Cambrian of North America, Nature, 2014, vol. 512, no. 7515, pp. 419–422.

    Article  CAS  PubMed  Google Scholar 

  112. Muller, G.B., Evo-devo: extending the evolutionary synthesis, Nat. Rev. Genet., 2007, vol. 8, pp. 943–949.

    Article  PubMed  CAS  Google Scholar 

  113. Murakami, Y., Ogasawara, M., Sugahara, F., et al., Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates, Development, 2001, vol. 128, no. 18, pp. 3521–3531.

    Article  CAS  PubMed  Google Scholar 

  114. Myojin, M., Ueki, T., Sugahara, F., et al., Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution, J. Exp. Zool., 2001, vol. 15, no. 291 (1), pp. 68–84.

  115. Nakatani, Y., Takeda, H., Kohara, Y., et al., Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates, Genome Res., 2007, vol. 17, pp. 1254–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nei, M., Gene duplication and nucleotide substitution in evolution, Nature, 1969, vol. 221, pp. 40–42.

    Article  CAS  PubMed  Google Scholar 

  117. Neidert, A.H., Virupannavar, V., Hooker, G.W., et al., Lamprey Dlx genes and early vertebrate evolution, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 13.

  118. Noro, M., Sugahara, F., and Kuraku, S., Reevaluating Emx gene phylogeny: homopolymeric amino acid tracts as a potential factor obscuring orthology signals in cyclostome genes, BMC Evol. Biol., 2015, vol. 15, no. 1, p. 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Northcutt, R.G., The new head hypothesis revisited, J. Exp. Zool., 2005, vol. 304B, pp. 274–297.

    Article  Google Scholar 

  120. Nossa, C.W., Havlak, P., Yue, J.-X., et al., Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication, Gigascience, 2014, vol. 3, pp. 708–721.

    Article  Google Scholar 

  121. Oisi, Y., Ota, K.G., and Kuraku, S., Craniofacial development of hagfishes and the evolution of vertebrates, Nature, 2013, vol. 493, pp. 175–180.

    Article  CAS  PubMed  Google Scholar 

  122. Onimaru, K. and Kuraku, S., Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications, Brief Funct. Genomics, 2018, vol. 17, no. 5, pp. 352–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Orr, H.A., “Why polyploidy is rarer in animals than in plants” revisited, Am. Nat., 1990, vol. 136, pp. 759–770.

    Article  Google Scholar 

  124. Osumi, N., Shinohara, H., Numayama-Tsuruta, K., et al., Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator, Stem Cells, 2008, vol. 26, pp. 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  125. Ota, K.G., Kuraku, S., and Kuratani, S., Hagfish embryology with reference to the evolution of the neural crest, Nature, 2007, vol. 446, pp. 672–675.

    Article  CAS  PubMed  Google Scholar 

  126. Otto, S.P., The evolutionary consequences of polyploidy, Cell, 2007, vol. 131, no. 3, pp. 452–462.

    Article  CAS  PubMed  Google Scholar 

  127. Pan, D. and Zhang, L., Burst of young retrogenes and independent retrogene formation in mammals, PLoS One, 2009, vol. 4. e5040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Parker, H.J., Piccinelli, P., Sauka-Spengler, T., et al., Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers, BMC Genomics, 2011, vol. 12, p. 637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Parker, H.J., Sauka-Spengler, T., Bronner, et al., A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers, PLoS One, 2014, vol. 9. e85492.

  130. Parker, H.J. and Krumlauf, R., Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates, Wiley Interdiscip. Rev. Dev. Biol., 2017, vol. 6, no. 6. e286.

    Article  Google Scholar 

  131. Parker, H.J., Bronner, M.E., and Krumlauf, R., An atlas of anterior hox gene expression in the embryonic sea lamprey head: hox-code evolution in vertebrates, Dev Biol., 2019a, vol. 453, no. 1, pp. 19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parker, H.J., De Kumar, B., Green, S.A., et al., A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates, Nat. Commun., 2019b, vol. 10, p. 1189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Pascual-Anaya, J., D’Aniello, S., Kuratani, S., et al., Evolution of hox gene clusters in deuterostomes, BMC Dev. Biol., 2013, vol. 13, p. 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Pascual-Anaya, J., Sato, I., Sugahara, F., et al., Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates, Nat. Ecol. Evol., 2018, vol. 2, pp. 859–866.

    Article  PubMed  Google Scholar 

  135. Pasquier, J., Braasch, I., Batzel, P., et al., Evolution of gene expression after whole-genome duplication: new insights from the spotted gar genome, J. Exp. Zool. Part B Mol. Dev. Evol., 2017, vol. 328, pp. 709–721.

    Article  CAS  Google Scholar 

  136. Van de Peer, Y., Maere, S., and Meyer, A., The evolutionary significance of ancient genome duplications, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 725–732.

    Article  CAS  PubMed  Google Scholar 

  137. Van de Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet, 2017, vol. 18, pp. 411–424.

    Article  CAS  PubMed  Google Scholar 

  138. Piovesan, A., Antonaros, F., Vitale, L., et al., Human protein-coding genes and gene feature statistics, BMC Res. Notes, 2019, vol. 12, p. 315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Plouhinec, J.L., Sauka-Spengler, T., Germot, A., et al., The mammalian Crx genes are highly divergent representatives of the Otx5 gene family, a gnathostome orthology class of orthodenticle-related homeogenes involved in the differentiation of retinal photoreceptors and circadian entrainment, Mol. Biol. Evol., 2003, vol. 20, pp. 513–521.

    Article  CAS  PubMed  Google Scholar 

  140. Pollard, S.L. and Holland, P.W., Evidence for 14 homeobox gene clusters in human genome ancestry, Curr. Biol., 2000, vol. 10, no. 17, pp. 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  141. Postlethwait, J.H., Woods, I.G., Ngo-Hazelett, P., et al., Zebrafish comparative genomics and the origins of vertebrate chromosomes, Genome Res., 2000, vol. 10, no. 12, pp. 1890–1902.

    Article  CAS  PubMed  Google Scholar 

  142. Postlethwait, J., Amores, A., Cresko, W., et al., Subfunction partitioning, the teleost radiation and the annotation of the human genome, Trends Genet., 2004, vol. 20, no. 10, pp. 481–490.

    Article  CAS  PubMed  Google Scholar 

  143. Prescott, S.L., Srinivasan, R., Marchetto, M.C., et al., Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest, Cell, 2015, vol. 163, pp. 68–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Prince, Y., Joly, L., Ekker, M., et al., Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk, Development, 1998, vol. 125, pp. 407–420.

    Article  CAS  PubMed  Google Scholar 

  145. Putnam, N.H., Butts, T., Ferrier, D.E., et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, 2008, vol. 453, pp. 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  146. Qiu, H., Hildebrand, F., Kuraku, S., et al., Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case, BMC Genomics, 2011, vol. 12, no. 1), p. 325.

  147. Quiring, R., Walldorf, U., Kloter, U., et al., Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans, Science (Washington, D.C.), 1994, vol. 265, pp. 785–789.

    Article  CAS  Google Scholar 

  148. Rausher, M.D., Escape from adaptive conflict after duplication in an anthocyanin pathway gene, Nature, 2008, vol. 454, pp. 762–765.

    Article  PubMed  CAS  Google Scholar 

  149. Ravi, V. and Venkatesh, B., The divergent genomes of teleosts, Annu Rev. Anim. Biosci., 2018, vol. 6, pp. 47–68.

    Article  CAS  PubMed  Google Scholar 

  150. Ravi, V., Lam, K., Tay, B.H., et al., Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 16327–16332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ravi, V., Bhatia, S., Shingate, P., et al., Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas, Sci. Rep., 2019, vol. 9, no. 1, p. 19559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Robertson, H.M. and Wanner, K.W., The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family, Genome Res., 2006, vol. 16, pp. 1395–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ruvinsky, I. and Gibson-Brown, J.J., Genetic and developmental bases of serial homology in vertebrate limb evolution, Development, 2000, vol. 127, no. 24, pp. 5233–5244.

    Article  CAS  PubMed  Google Scholar 

  154. Sacerdot, C., Louis, A., Bon, C., et al., Chromosome evolution at the origin of the ancestral vertebrate genome, Genome Biol., 2018, vol. 19, no. 1, p. 166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Sahoo, T., Dzidic, N., Strecker, M.N., et al., Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges, Genet. Med., 2017, vol. 19, no. 1, pp. 83–89.

    Article  CAS  PubMed  Google Scholar 

  156. Sansom, R.S., Freedman, K., Gabbott, S.E., et al., Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White, Palaeontology, 2010, vol. 53, no. 6, pp. 1393–1409.

    Article  Google Scholar 

  157. Sansom, R.S., Gabbott, S.E., and Purnell, M.A., Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages, Biol. Lett., 2013, vol. 9, p. 20130002.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Santos, M.E., Athanasiadis, A., Leitao, A.B., et al., Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily, Mol. Biol. Evol., 2011, vol. 28, pp. 237–247.

    Article  CAS  PubMed  Google Scholar 

  159. Satoh, N., Chordate Origins and Evolution: the Molecular Evolutionary Road to Vertebrates, San Diego: Academic, 2016.

    Google Scholar 

  160. Sauka-Spengler, T. and Bronner-Fraser, M., Evolution of the neural crest viewed from a gene regulatory perspective, Genesis, 2008, vol. 46, pp. 673–682.

    Article  PubMed  Google Scholar 

  161. Sánchez-Villagra, M.R., Geiger, M., and Schneider, R.A., The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals, R. Soc. Open Sci., 2016, vol. 3, p. 160107.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Scannell, D.R., Frank, A.C., Conant, G.C., et al., Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 20, pp. 8397–8402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Scannell, D.R., Butler, G., and Wolfe, K.H., Yeast genome evolution—the origin of the species, Yeast, 2007, vol. 24, no. 11, pp. 929–942.

    Article  CAS  PubMed  Google Scholar 

  164. Schwager, E.E., Sharma, P.P., Clarke, T., et al., The house spider genome reveals an ancient whole-genome duplication during arachnid evolution, BMC Biol., 2017, vol. 15, no. 1, p. 62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Sharman, A.C., Some new terms for duplicated genes, Semin. Cell Dev. Biol., 1999, vol. 10, pp. 561–563.

    Article  CAS  PubMed  Google Scholar 

  166. Shimeld, S.M. and Donoghue, P.C.J., Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish), Development, 2012, vol. 139, pp. 2091–2099.

    Article  CAS  PubMed  Google Scholar 

  167. Shu, D.-G., Luo, H.-L., Conway, MorrisS., et al., Lower Cambrian vertebrates from south china, Nature, 1999, vol. 402, no. 6757, pp. 42–46.

    Article  CAS  Google Scholar 

  168. Shu, D.-G., Morris, S.C., Han, J., et al., Head and backbone of the early Cambrian vertebrate Haikouichthys, Nature, 2003, vol. 421, no. 6922, pp. 526–529.

    Article  CAS  PubMed  Google Scholar 

  169. Sikosek, T., Chan, H.S., and Bornberg-Bauer, E., Escape from adaptive conflict follows from weak functional trade-offs and mutational robustness, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 14888–14893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Simakov, O., Marletaz, F., Yue, J.X., et al., Deeply conserved synteny resolves early events in vertebrate evolution, Nat. Ecol. Evol., 2020, vol. 4, no. 6, pp. 820–830.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Slack, J.M. and Tannahill, D., Noggin the dorsalizer, Nature, 1993, vol. 361, pp. 498–499.

    Article  CAS  PubMed  Google Scholar 

  172. Smith, W.C. and Harland, R.M., Expression cloning of noggin, a new dorsalizing factor localized to the Spemann orginizer in Xenopus embryos, Cell, 1992, vol. 70, pp. 829–840.

    Article  CAS  PubMed  Google Scholar 

  173. Smith, W.C., Knecht, A.K., Wu, M., et al., Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm, Nature, 1993, vol. 361, pp. 547–549.

    Article  CAS  PubMed  Google Scholar 

  174. Smith, J.J., Kuraku, S., Holt, C., et al., Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution, Nat. Genet., 2013, vol. 45, pp. 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Smith, J.J. and Keinath, M.C., The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications, Genome Res., 2015, vol. 25, pp. 1081–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Smith, J.J., Timoshevskaya, N., Ye, C., et al., The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution, Nat. Genet., 2018, vol. 50, pp. 270–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Soltis, D.E., Bell, C.D., Kim, S., et al., Origin and early evolution of angiosperms, Ann. N.Y. Acad. Sci., 2008, vol. 1133.

  178. Soltis, D.E., Albert, V.A., Leebens-Mack, J., et al., Polyploidy and angiosperm diversification, Am. J. Bot., 2009, vol. 96, no. 1, pp. 336–348.

    Article  PubMed  Google Scholar 

  179. Song, X., Wang, Y., and Tang, Y., Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event, PLoS One, 2013, vol. 8. e83858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Song, X., Tang, Y., and Wang, Y., Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events, Gene, 2016, vol. 588, no. 2, pp. 156–162.

    Article  CAS  PubMed  Google Scholar 

  181. Spring, J., Vertebrate evolution by interspecific hybridization—are we polyploid?, FEBS Lett., 1997, vol. 400, pp. 2–8.

    Article  CAS  PubMed  Google Scholar 

  182. Stoltzfus, A., On the possibility of constructive neutral evolution, J. Mol. Evol., 1999, vol. 49, pp. 169–181.

    Article  CAS  PubMed  Google Scholar 

  183. Sugino, R.P. and Innan, H., Selection for more of the same product as a force to enhance concerted evolution of duplicated genes, Trends Genet., 2006, vol. 22, pp. 642–644.

    Article  CAS  PubMed  Google Scholar 

  184. Takahashi, H., Takahashi, K., and Liu, F.C., FOXP genes, neural development, speech and language disorders, Adv. Exp. Med. Biol., 2009, vol. 665, pp. 117–129.

    Article  CAS  PubMed  Google Scholar 

  185. Tang, H., Wang, X., Bowers, J.E., et al., Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps, Genome Res., 2008, vol. 18, no. 12, pp. 1944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tank, E.M., Dekker, R.G., Beauchamp, K., et al., Patterns and consequences of vertebrate Emx gene duplications, Evol. Dev., 2009, vol. 11, no. 4, pp. 343–353.

    Article  CAS  PubMed  Google Scholar 

  187. Tank, E.M., Dekker, R.G., Beauchamp, K., et al., Patterns and consequences of vertebrate Emx gene duplications, Evol. Dev., 2009, vol. 11, no. 4, pp. 343–353.

    Article  CAS  PubMed  Google Scholar 

  188. Taylor, J.S., Van de Peer, Y., Braasch, I., et al., Comparative genomics provides evidence for an ancient genome duplication event in fish, Philos. Trans. R. Soc., B, 2001, vol. 356, pp. 1661–1679.

  189. Valerius, M.T., Li, H., Stock, J.L., et al., Gsh-1: a novel murine homeobox gene expressed in the central nervous system, Dev. Dyn., 1995, vol. 203, no. 3, pp. 337–351.

    Article  CAS  PubMed  Google Scholar 

  190. Vanneste, K., Baele, G., Maere, S., et al., Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the cretaceous-Paleogene boundary, Genome Res., 2014, vol. 24, no. 8, pp. 1334–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Veitia, R.A., Gene dosage balance: deletions, duplications and dominance, Trends Genet., 2005, vol. 21, pp. 33–35.

    Article  CAS  PubMed  Google Scholar 

  192. Vuolo, F., Mentink, R.A., Hajheidari, M., et al., Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity, Genes Dev., 2016, vol. 30, pp. 2370–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wagner, A., The molecular origins of evolutionary innovations, Trends Genet., 2011, vol. 27, no. 10, pp. 397–410.

    Article  CAS  PubMed  Google Scholar 

  194. Wilkins, A.S., Wrangham, R.W., and Fitch, W.T., The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics, Genetics, 2014, vol. 197, pp. 795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wittbrodt, J., Meyer, A., and Schartl, M., More genes in fish?, BioEssays, 1998, vol. 20, pp. 511–515.

    Article  Google Scholar 

  196. Woolfe, A. and Elgar, G., Comparative genomics using fugu reveals insights into regulatory subfunctionalization, Genome Biol., 2007, vol. 8, no. 4, p. R53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Xanthos, J.B., Kofron, M., Tao, Q., et al., The roles of three signaling pathways in the formation and function of the Spemann organizer, Development, 2002, vol. 129, no. 17, pp. 4027–4043.

    Article  CAS  PubMed  Google Scholar 

  198. Yang, M., Wang, Y., Wang, X., et al., Characterization of grass carp (Ctenopharyngodon idellus) Foxp1a/1b/2: evidence for their involvement in the activation of peripheral blood lymphocyte subpopulations, Fish Shellfish Immunol., 2010, vol. 28, pp. 289–295.

    Article  CAS  PubMed  Google Scholar 

  199. York, J.R. and McCauley, D.W., Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates, J. Exp. Biol., 2020, vol. 223, suppl. 1. jeb206433.

    Article  PubMed  Google Scholar 

  200. Zhang, X.G. and Hou, X.G., Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis, J. Evol. Biol., 2004, vol. 17, pp. 1162–1166.

    Article  PubMed  Google Scholar 

  201. Zhang, G., Fang, X., Guo, X., et al., The oyster genome reveals stress adaptation and complexity of shell formation, Nature, 2012, vol. 490, pp. 49–54.

    Article  CAS  PubMed  Google Scholar 

  202. Zhang, X., Zhang, Y., Zheng, X., et al., A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.), Mar. Biotechnol., 2013, vol. 15, pp. 275–312.

    Article  CAS  Google Scholar 

  203. Zhang, H., Ravi, V., Tay, B.H., et al., Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 34, pp. 9146–9151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research and publication were supported by the Russian Foundation for Basic Research, grant no. 20-14-50172. The study of the expression of the lamprey Noggin genes presented in the article was supported by the Russian Foundation for Basic Research, grant no. 18-04-00015; the functional analysis of the lamprey Noggin genes was supported by the Russian Foundation for Basic Research, grant no. 18-29-07014 MK; phylogenetic analysis and the evolution model of the lamprey Noggin genes (Fig. 6c) were supported by the Russian Foundation for Basic Research, grant no. 20-04-00675A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bayramov.

Ethics declarations

The authors declare that they have no conflict of interests.

This paper does not describe any studies involving animals or human subjects performed by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayramov, A.V., Ermakova, G.V., Kuchryavyy, A.V. et al. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 52, 141–163 (2021). https://doi.org/10.1134/S1062360421030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421030024

Keywords:

Navigation