Skip to main content

Case Studies of Seven Gene Families with Unusual High Retention Rate Since the Vertebrate and Teleost Whole-Genome Duplications

  • Chapter
  • First Online:
Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts

Abstract

In the course of their evolution, the genomes of vertebrates have been subject to several events of whole-genome duplication (WGD): two rounds at the base of the vertebrates, a third at the base of the teleostean fish, and a few others in specific lineages like the salmonid fish or the Xenopus frogs among amphibians. Among the genes that were kept as duplicates long after the rediploidization process occurred, those that are involved in development, cell, and tissue diversification have the highest retention rates. In these categories fall gene families of different sizes that we previously investigated, namely genes that are implicated in the extracellular matrix formation that are the lectican, hapln, and adamts, or inducing a transcription or a cellular cascades: the transcription factors sox gene family, the nuclear receptors, the melanocortin receptors, cytoplasmic tyrosine kinases, and receptor tyrosine kinases. Here, we present an update of the expansion of these gene families due to the major vertebrate WGDs operated. Since the first occurrence of these WGDs, only six events of single gene duplication are reported, one being teleost fish specific and the second being sry in therians. This contrasts with the 71 ancestral genes that expanded in the jawed vertebrates to a total of 192 extant genes, and 75 additional genes in the teleost fish. We also discuss the ambiguities observed with the usual procedures of calculating gene retention rates. Interestingly, we observe that some of the gene families expanded in an intriguing regular manner. Those are also the ones that show very restricted lineage-specific losses. This feature is compatible and thus supportive of the autosomal-dominant deleterious mutation hypothesis that hampers the loss of the duplicated genes and explains their retention. Overall, the WGDs are shown to have amply participated in expansion of the gene families studied here, hence providing new potential for gene diversification, and by extension to the enhancement of molecular and cellular components of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

WGD:

Whole-genome duplication

MYA:

Million years ago

MYR:

Million years

References

  • Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Le Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genêt C, Wincker P, Jaillon O, Roest Crollius H, Guiguen Y (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657. doi:10.1038/ncomms4657

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand S, Belgacem MR, Escriva H (2011) Nuclear hormone receptors in chordates. Mol Cell Endocrinol 334:67–75

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Brunet F, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M (2004) Evolutionary genomics of nuclear receptors: from 25 ancestral genes to derived endocrine systems. Mol Biol Evol 21:1923–1937

    Article  CAS  PubMed  Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Curr 5 pii: ecurrents.tol.53ba26640df0ccaee75bb165c8c26288

    Google Scholar 

  • Bianchi ME, Beltrame M (1998) Flexing DNA: HMG-box proteins and their partners. Am J Hum Genet 63:1573–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward CA (2017) The extracellular matrix in cancer progression: role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 28:55–64

    Article  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brocker CN, Vasilis Vasiliou V, Nebert DW (2009) Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Human Genomics 4:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronwen LA, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, Garcín Girón C, Hourlier T, Howe K, Kähäri A, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Amy Tang Y, Vogel J-H, White S, Zadissa A, Flicek P, Searle SMJ (2016) The Ensembl gene annotation system. Database, baw093. doi:10.1093/database/baw093

  • Brunet F, Fraser FW, Binder MJ, Smith AD, Kintakas C, Dancevic CM, Ward AC, McCulloch DR (2015) The evolutionary conservation of the A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motif metzincins across vertebrate species and their expression in teleost zebrafish. BMC Evol Biol 15:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunet F, Kintakas C, Smith A, McCulloch DR (2012) The function of the hyalectan class of proteoglycans and their binding partners during vertebrate development. In: Berhardt LV (ed) Advances in medicine and biology, vol 52. ISBN: 978-1-62081-339-3

    Google Scholar 

  • Brunet F, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole genome duplication in teleost fishes. Mol Biol Evol 23:1808–1816

    Article  CAS  PubMed  Google Scholar 

  • Brunet F, Volff J-N, Schartl M (2016) Whole genome duplications shaped the receptor tyrosine kinase repertoire of jawed vertebrates. Genome Biol Evol 8:1600–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J (2013) Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 24:83–94. doi:10.1016/j.semcdb.2012.12.008

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nature Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  • Cortés R, Navarro S, Agulleiro MJ, Guillot R, García-Herranz V, Sánchez E, Cerdá-Reverter JM (2014) Evolution of the melanocortin system. Gen Comp Endocrinol 209:3–10. doi:10.1016/j.ygcen.2014.04.005

    Article  PubMed  CAS  Google Scholar 

  • D’Aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jiménez-Delgado S, Bertrand S, Garcia-Fernàndez J (2008) Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus. Mol Biol Evol 25:1841–1854

    Article  PubMed  CAS  Google Scholar 

  • Davis JC, Petrov DA (2005) Do disparate mechanisms of duplication add similar genes to the genome? Trends Genet 21:548–551

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Rocha EP, Brunet F, Vergassola M, Dujon B (2006) Highly variable rates of genome rearrangements between Hemiascomycetous yeast lineages. PLoS Genet 2:e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JW, Graves JA (1994) An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA 91:1927–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58:685–704

    Article  CAS  PubMed  Google Scholar 

  • Gout J-F, Lynch M (2015) Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol Biol Evol 32:2141–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Heenan P, Zondag L, Wilson MJ (2016) Evolution of the Sox gene family within the chordate phylum. Gene 575:385–392

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 8:1100–1111

    Article  CAS  Google Scholar 

  • Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G (2008) Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res 18:1582–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369

    CAS  PubMed  Google Scholar 

  • Hughes T, Ekman D, Ardawatia H, Elofsson A, Liberles DA (2007) Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia. Genome Biol 8:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huminiecki L, Heldin CH (2010) 2R and remodeling of vertebrate signal transduction engine. BMC Biol 8:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc Biol Sci 274:489–498

    Article  CAS  PubMed  Google Scholar 

  • Inoue J, Yukuto S, Sinclair R, Tsukamoto K, Nishida M (2015) Rapid genome reshaping by multiple-gene loss after while-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci 112:14918–14923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager M, Queinnec E, Houliston E, Manuel M (2006) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39:468–477

    Article  CAS  PubMed  Google Scholar 

  • Jager M, Quéinnec E, Le Guyader H, Manuel M (2011) Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evodevo 2:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552

    Google Scholar 

  • Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19:1404–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Google Scholar 

  • Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113. doi:10.1186/s13059-015-0676-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenny NJ, Chan KW, Nong W, Qu Z, Maeso I, Yip HY, Chan TF, Kwan HS, Holland PW, Chu KH, Hui JH (2016) Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs. Heredity 116:90–199

    Article  CAS  Google Scholar 

  • Kuwada Y (1911) Meiosis in the pollen mother cells of Zea Mays L. Bot Mag 25:163

    Article  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    Article  CAS  PubMed  Google Scholar 

  • Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, Worheide G, Leys SP, Degnan BM (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8:150–173

    Article  CAS  PubMed  Google Scholar 

  • Laudet V, Stehelin D, Clevers H (1993) Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res 21:2493–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gouar M, Guillou A, Vervoort M (2004) Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata. Dev Genes Evol 214:250–256

    Article  PubMed  Google Scholar 

  • Lecroisey C, Laudet V, Schubert M (2012) The cephalochordate amphioxus: a key to reveal the secrets of nuclear receptor evolution. Brief Funct Genomics 11:156–166. doi:10.1093/bfgp/els008

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JT, Hou GY, Kong XF, Li CY, Zeng JM, Li HD, Xiao GB, Li XM, Sun XW (2015) The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio). Sci Rep 5:8199. doi:10.1038/srep08199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WH (1983) Evolution of duplicate genes and pseudogenes. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, pp 14–37

    Google Scholar 

  • Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409:847–849

    Article  CAS  PubMed  Google Scholar 

  • Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Våge DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205. doi:10.1038/nature17164

    Article  CAS  PubMed  Google Scholar 

  • Louis A, Muffato M, Roest Crollius H (2012) Genomicus: five genome browsers for comparative genomics in Eukaryota. Nucleic Acids Res 41:D700–D705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc. B 281:20132881

    Article  PubMed  PubMed Central  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino T, McLysaght A (2010) Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci 107:9270–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Markov GV, Laudet V (2011) Origin and evolution of the ligand-binding ability of nuclear receptors. Mol Cell Endocrinol 334:21–30

    Article  CAS  PubMed  Google Scholar 

  • McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath CL, Gout J-F, Johri P, Doak TG, Lynch M (2014a) Differential retention and divergent resolution of duplicate genes following whole genome duplication. Genome Res 24:1665–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath CL, Gout JF, Doak TG, Yanagi A, Lynch M (2014b) Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence. Genetics 197:1417–1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson AC, Malik SB, Logsdon JM Jr, Van Meir EG (2005) Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and geneorganization. BMC Evol Biol 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno S (1970) Evolution of gene duplication. Springer, New-York

    Book  Google Scholar 

  • Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10:517–522

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Yoda H, Uchikawa M, Furutani-Seiki M, Takeda H, Kondoh H, Kamachi Y (2006) Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Dev Dyn 235:811–825

    Article  CAS  PubMed  Google Scholar 

  • Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M, Cheruvallath Z, Jackson D, Casari G, Koegl M, Pääbo S, Mous J, Kremoser C, Deuschle U (2003) Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol 23:864–872. doi:10.1128/mcb.23.3.864-872.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Panopoulou G, Poustka AJ (2017) Timing and mechanism of ancient vertebrate genome duplications—the adventure of a hypothesis. Trends Genetics in press

    Google Scholar 

  • Paterson AH, Chapman BA, Kissinger JC, Bowers JE, Feltus FA, Estill JC (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22:597–602

    Article  CAS  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  CAS  PubMed  Google Scholar 

  • Rajkov J, Shao Z, Berrebi P (2014) Evolution of polyploidy and functional diploidization in sturgeons: microsatellite analysis in 10 sturgeon species. J Hered 105:521–531

    Article  PubMed  Google Scholar 

  • Ravi V, Lam K, Tay BH, Tay A, Brenner S, Venkatesh B (2009) Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl Acad Sci USA 106:16327–16332. doi:10.1073/pnas.0907914106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  CAS  PubMed  Google Scholar 

  • Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:94

    Article  CAS  Google Scholar 

  • Sato Y, Hashiguchi Y, Nishida M (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schartl M, Volff J-N, Brunet F (2015) Evolution of receptor tyrosine kinases. In: Yarden Y (ed) Receptor tyrosine kinases: structure, functions and role in human disease handbook

    Google Scholar 

  • Schlessinger J (2014) Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6:a008912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid M, Evans BJ, Bogart JP (2015) Polyploidy in Amphibia. Cytogenet Genome Res 145:315–330

    Article  PubMed  Google Scholar 

  • Schubert M, Brunet F, Paris M, Bertrand S, Benoit G, Laudet V (2008) Nuclear hormone receptor signaling in amphioxus. Dev Genes Evol 218:651–665

    Article  CAS  PubMed  Google Scholar 

  • Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R (2009) Sex determination and SRY: down to a wink and a nudge? Trends Genet 25:19–29

    Article  CAS  PubMed  Google Scholar 

  • Sémon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343. doi:10.1038/nature19840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Affeldt S, Cascone I, Selimoglu R, Camonis J, Isambert H (2012) On the expansion of “dangerous” gene repertoires by whole-genome duplications in early vertebrates. Cell Rep 2:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Keinath MC (2015) The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. Genome Res 25:1081–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SM, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson YW, Nanlohy KG, Libants SV, Yeh CY, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu B, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li W (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genet 45:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  PubMed  Google Scholar 

  • Soullier S, Jay P, Poulat F, Vanacker J-M, Berta P, Laudet V (1999) Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol 48:517–527

    Article  CAS  PubMed  Google Scholar 

  • Spicer AP, Joo A, Bowling RA Jr (2003) A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem 278:21083–21091

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T et al (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genom 7:20

    Article  CAS  Google Scholar 

  • Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N, Martin S, Coles C, Collier F, Ward AC, Apte SS, McCulloch DR (2013) Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem 288:1907–1917

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Sasaki G, Kuma K, Nishiyori H, Hirose N, Su ZH, Iwabe N, Miyata T (2008) Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes. FEBS Lett 582:815–818

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kawauchi H (2006) Evolution of melanocortin systems in fish. Gen Comp Endocrinol 148:85–94

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  CAS  PubMed  Google Scholar 

  • Turunen O, Seelke R, Macosko J (2009) In silico evidence for functional specialization after genome duplication in yeast. FEMS Yeast Res 9:16–31

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y (2013) Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity 111:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanneste K, Baele G, Maere S, Van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res 24:1334–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Västermark Å, Schiöth HB (2011) The early origin of melanocortin receptors, agouti-related peptide, agouti signalling peptide, and melanocortin receptor-accessory proteins, with emphasis on pufferfishes, elephant shark, lampreys, and amphioxus. Eur J Pharmacol 660:61–69

    Article  PubMed  CAS  Google Scholar 

  • Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grutzner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voldoire E, Brunet FG, Naville M, Volff J-N, Galiana D (2017) Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. PLoS ONE (PONE-D-17-05926R1)

    Google Scholar 

  • Volff J-N (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Volff J-N (2009) Cellular genes derived from Gypsy/Ty3 retrotransposons in mammalian genomes. Ann NY Acad Sci 1178:233–243

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Selz Y, Hoffmann C, Froschauer A, Schultheis C, Schmidt C, Zhou Q, Bernhardt W, Hanel R, Böhne A, Brunet F, Ségurens B, Couloux A, Bernard-Samain S, Barbe V, Ozouf-Costaz C, Galiana D, Lohse MJ, Schartl M (2013) Gene amplification and functional diversification of melanocortin 4 receptor at an extremely polymorphic locus controlling sexual maturation in the platyfish. Genetics 195:1337–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang J, Alvarez C, Llopart A, Long M (2000) The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol Biol Evol 17:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gu X (2000) Evolutionary patterns of gene families generated in the early stage of vertebrates. J Mol Evol 51:88–96

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560

    Article  CAS  PubMed  Google Scholar 

  • Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe K (2000) Robustness—it’s not where you think it is. Nat Genet 25:3–4

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, Long M, Wang W (2008) Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 4(1):e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Dean AM, Brunet F, Long M (2004) Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci USA 101:16246–16250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signaling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric G. Brunet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brunet, F.G. et al. (2017). Case Studies of Seven Gene Families with Unusual High Retention Rate Since the Vertebrate and Teleost Whole-Genome Duplications. In: Pontarotti, P. (eds) Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts. Springer, Cham. https://doi.org/10.1007/978-3-319-61569-1_19

Download citation

Publish with us

Policies and ethics