Skip to main content
Log in

Exogenous IAA and ABA stimulate germination of petunia male gametophyte by activating Ca2+-dependent K+-channels and by modulating the activity of plasmalemma H+-ATPase and actin cytoskeleton

  • Developmental Biology of Plants
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

To date, the molecular mechanisms underlying the osmoregulation of pollen grains (PGs) related to the maintenance of their water status and allowing pollen tubes (PTs) to regulate concentrations in them of osmolytes and transmembrane water transport remain to be not so far characterized. In the present work, the data on the participation of IAA and ABA in the osmoregulation of germinating in vitro petunia male gametophyte were obtained. It has been established that the growth-stimulating effect of these phytohormones is due to their action on intracellular pH (pHc), the membrane potential of plasmalemma (PM), the activity of PM H+-ATPase, K+-channels in the same membrane and organization of actin cytoskeleton (AC). Two possible targets of the action of these compounds are revealed. These are represented by (1) PM H+-ATPase, electrogenic proton pump responsible for polarization of this membrane, and (2) Ca2+-dependent K+-channels. The findings of the present work suggest that the hormone-induced pHc shift is involved in cascade of the events including the functioning of pH-dependent K+-channels. It was shown that the hormoneinduced hyperpolarization of the PM is a result of stimulation of electrogenic activity of PM H+-ATPase and the hormonal effects are mediated by transient elevation in the level of free Ca2+ in the cytosol and generation of reactive oxygen species (ROS). The results on the role of K+ ions in the control of water-driving forces for transmembrane water transport allowed us to formulate the hypothesis that IAA and ABA stimulate germination of PGs and growth of PTs by activating K+-channels. In addition, the studies performed showed that the AC of male gametophyte is sensitive to the action of exogenous phytohormones, with to more extent to the action of IAA. As judged by the action of latrunculin B (LB) the AC may serve as the determinant of the level of endogenous phytohormones that most likely participate in the regulation of the polar growth of PTs impacting on the pool of F-actin in their apical and subapical zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreev, I.M., Timofeeva, G.V., Minkina, Yu.V., et al., Effects of exogenous phytohormones on intracellular pH of Petunia hybrida pollen grains, Russ. J. Plant Physiol., 2007, vol. 54, pp. 626–632.

    Article  CAS  Google Scholar 

  • Becker, D., Geiger, D., Dunkel, M., et al., AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+- dependent manner, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 15621–15626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breygina, M.A., Matveeva, N.P., Andreyuk, D.S., et al., Transmembrane transport of K+ and Clduring pollen grain activation in vivo and in vitro, Russ. J. Dev. Biol., 2012, vol. 43, pp. 85–93.

    Article  CAS  Google Scholar 

  • Bright, J., Hiscock, S.J., James, P.E., et al., Pollen generates nitric oxide and nitrite: a possible link to polleninduced allergic responses, Plant Physiol. Biochem., 2009, vol. 47, pp. 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Cecchetti, V., Altamura, M.M., Falasca, G., et al., Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation, Plant Cell, 2008, vol. 20, pp. 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certal, A.C., Almeida, R.B., Carvalho, L.M., et al., Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes, Plant Cell, 2008, vol. 20, pp. 614–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D., Ren, Y., Deng, Y., et al., Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PMH+-ATPase activities, J. Exp. Bot., 2010, vol. 61, pp. 1853–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. and Friml, J., Rho-GTPase-regulated vesicle trafficking in plant cell polarity, Biochem. Soc. Trans., 2014, vol. 42, pp. 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Dal Bosco, C., Dovzhenko, A., and Palme, K., Intracellular auxin transport in pollen: PIN8, PIN5 and PILS5, Plant Signal. Behav., 2012, vol. 7, pp. 1504–1505.

    Article  Google Scholar 

  • Danti, R., Della Rocca, G., Calamassi, R., et al., Insights into a hydration regulating system in Cupressus pollen grains, Ann. Botany, 2011, vol. 108, pp. 299–306.

    Article  CAS  Google Scholar 

  • Dekkers, B.J., Schuurmans, J.A., and Smeekens, S.C., Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis, Plant. Mol. Biol., 2008, vol. 67, pp. 151–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, X., Hou, J., and Chen, X., Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen, Plant Physiol., 2004, vol. 136, pp. 3979–3989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijo, J.A., Malho, R., and Obermeyer, G., Ion dynamics and its possible role during in vitro pollen germination and tube growth, Protoplasma, 1995, vol. 187, pp. 155–167.

    Article  CAS  Google Scholar 

  • Feng, X.L., Ni, W.M., Elge, S., et al., Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis, Plant. Mol. Biol., 2006, vol. 61, pp. 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Firon, N., Nepi, M., and Pacini, E., Water status and associated processes mark critical stages in pollen development and functioning, Ann. Botany, 2012, vol. 109, pp. 1201–12014.

    Article  CAS  Google Scholar 

  • Gu, Y., Fu, Y., Dowd, P., et al., A Rho family GTPase control actin dynamics and tip growth via counteracting downstream pathways in pollen tubes, J. Cell Biol., 2005, vol. 169, pp. 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himschoot, E., Beeckman, T., Friml, J., et al., Calcium is an organizer of cell polarity in plants, Biochim. Biophys. Acta, 2015 (in press).

    Google Scholar 

  • Hoedemaekers, K., Derksen, J., Hoogstrate, S.W., et al., Bursting pollen is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana, New Phytol., 2014. doi 10.1111/nph.13200

    Google Scholar 

  • Hsu, S.W., Cheng, C.L., Tzen, T.C., et al., Rop GTPase and its target Cdc42/Rac-interactive-binding motifcontaining protein genes respond to desiccation during pollen maturation, Plant Cell Physiol., 2010, vol. 51, pp. 1197–1209.

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Dong, B., Shiran, B., et al., Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals, Plant Physiol., 2011, vol. 156, pp. 647–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo, J.H., Bae, Y.S., and Lee, J.S., Role of auxin-induced reactive oxygen species in root gravitropism, Plant Physiol., 2001, vol. 126, pp. 1055–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaleva, L. and Zakharova, E., Hormonal status of the pollen-pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L., Sex. Plant Reprod., 2003, vol. 16, pp. 191–196.

    Article  CAS  Google Scholar 

  • Kovaleva, L.V., Zakharova, E.V., Minkina, Yu.V., et al., Germination and in vitro growth of petunia male gametophyte are affected by exogenous hormones and involve the changes in the endogenous hormone level, Russ. J. Plant Physiol., 2005, vol. 52, pp. 521–526.

    Article  CAS  Google Scholar 

  • Kovaleva, L.V., Voronkov, A.S., and Zakharova, E.V., Role of auxin and cytokinin in the regulation of the actin cytoskeleton in the in vitro germinating male gametophyte of petunia, Russ. J. Plant Physiol., 2015, vol. 62, pp. 179–186.

    Article  CAS  Google Scholar 

  • Lang, V., Pertl-Obermeyer, H., Safiarian, M.J., et al., Pump up the volume—a central role for the plasma membrane H(+) pump in pollen germination and tube growth, Protoplasma, 2014, vol. 251, pp. 477–488.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Feng, Z., Xie, M., et al., Modulation of the rootsourced aba signal along its way to the shoot in Vitis riparia × Vitis labrusca under water deficit, J. Exp. Bot., 2011, vol. 62, pp. 1731–1741.

    Article  CAS  PubMed  Google Scholar 

  • Malhó, R., Liu, Q., and Monteiro, D., Signalling pathways in pollen germination and tube growth, Protoplasma, 2006, vol. 228, pp. 21–30.

    Article  PubMed  Google Scholar 

  • Matveeva, N.P., Voitsekh, O.O., Andreyuk, D.S., et al., Role of H+-ATPase and alternative oxidase in regulation of intracellular pH at different stages of development of the tobacco male gametophyte, Russ. J. Dev. Biol., 2002, vol. 33, pp. 355–361.

    Article  CAS  Google Scholar 

  • Nibau, C., Tao, L., and Levasseur, K., The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signaling, J. Exp. Bot., 2013, vol. 64, pp. 3425–3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nick, P., Han, M.-J., and An, G., Auxin stimulates its own transport by shaping actin filaments, Plant Physiol., 2009, vol. 151, pp. 155–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertl, H., Pockl, M., Blaschke, C., et al., Osmoregulation in Lilium pollen grains occurs via modulation of the plasma membrane H+-ATPase activity by 14-3-3 proteins, Plant Physiol., 2010, vol. 154, pp. 1921–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potocký, M., Jones, M.A., Bezvoda, R., et al., Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth, New Phytol., 2007, vol. 174, pp. 742–751.

    Article  PubMed  Google Scholar 

  • Qu, X., Jiang, Y., Chang, M., et al., Organization and regulation of the actin cytoskeleton in the pollen tube, Front Plant Sci., 2015, vol. 5, p. 786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman, S. and Yun, S.J., Developmental regulation of K accumulation in pollen, anthers, and papillae: are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization in barley (Hordeum vulgare L.) regulated by changes in K concentration?, J. Exp. Bot., 2006, vol. 57, pp. 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  • Safiarian, M.J., Pertl-Obermeyer, H., Lughofer, P., et al., Lost in traffic? The K+ channel of lily polle, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen, Front Plant Sci., 2015, vol. 6, Article 47. doi 10.3389/fpls.2015.00047

  • Sakata, T., Oshino, T., Miura, S., et al., Auxins reverse plant male sterility caused by high temperatures, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 8569–8574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, T., Dreyer, I., and Riedelsberger, J., The role of K+-channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana, Front Plant Sci., 2013, vol. 4, Article 224. doi 10.3389/fpls.2013.00224

  • Skorobogatova, I.V., Zakharova, E.V., Karsunkina, N.P., et al., Changes in the content of phytohormones in barley seedlings in ontogenesis and in the presence of growth-stimulating regulators, Agrokhimiya, 1999, vol. 8, pp. 49–53.

    Google Scholar 

  • Smirnova, A.V., Matveeva, N.P., Polesskaya, O.G., et al., Generation of reactive oxygen species during pollen grain germination, Russ. J. Dev. Biol., 2009, vol. 40, pp. 345–353.

    Article  CAS  Google Scholar 

  • Staiger, C.J., Poulter, N.S., Henty, J.L., et al., Regulation of actin dynamics by actin-binding proteins in pollen, J. Exp. Bot., 2010, vol. 61, pp. 1969–1986.

    Article  CAS  PubMed  Google Scholar 

  • Sun, H., Basu, S., Brady, S.R., et al., Interactions between auxin transport and actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity, Plant Physiol., 2004, vol. 135, pp. 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg, E. and Østergaard, L., Distinct and dynamic auxin activities during reproductive development, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, no. 6. a001628. Epub 2009 Oct 14. doi 10.1101/cshperspect.a001628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao, L.Z., Cheung, A.Y., Nibau, C., et al., Rac GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins, Plant Cell, 2005, vol. 17, pp. 2369–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Johnson, I. and Spence, M.T.Z., Eds., USA: Life Technology Corporation, 2010.

  • Umezawa, T., Nakashima, K., Miyakawa, T., et al., Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport, Plant Cell Physiol., 2010, vol. 51, pp. 1821–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali, L., McKenna, S.T., and Hepler, P.K., Actin polymerization is essential for pollen tube growth, Mol. Biol. Cell, 2001, vol. 12, pp. 2534–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voronkov, A.S., Andreev, I.M., Timofeeva, G.V., et al., Electrogenic activity of plasma membrane H+-ATPase in germinating male gametophyte of petunia and its stimulation by exogenous auxin: mediatory role of calcium and reactive oxygen species, Russ. J. Plant Physiol., 2010, vol. 57, pp. 401–407.

    Article  CAS  Google Scholar 

  • Wang, L. and Liu, Y.-M., Comparison of F-actin fluorescent labeling method in pollen tubes of Lilium davidii, Plant Cell Rep., 2005, vol. 24, pp. 266–270.

    Article  CAS  PubMed  Google Scholar 

  • Weihuang, Y., Chang, S.J., Harn, H.I., et al., Mechanosensitive store-operated calcium entry regulates the formation of cell polarity, J. Cell Physiol., 2015. doi 10.1002/jcp.24936

    Google Scholar 

  • Wilkins, K.A., Bosch, M., Haque, T., et al., Self-incompatibility- induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol, Plant Physiol., 2015, vol. 167, pp. 766–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, Z., Zhao, Y., and Zheng, Z.L., Transciptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis, Plant Physiol., 2005, vol. 139, pp. 1350–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, T., Dai, N., Chen, J., et al., Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling, Science, 2014, vol. 343, pp. 1025–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, A., Xu, G., and Yang, Z.B., Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 22002–22007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X.C., Li, M.J., Gao, G.F., et al., Abscisic acid stimulates a calcium-dependent protein kinase in grape berry, Plant Physiol., 2006, vol. 140, pp. 558–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L.-N., Shen, L.-K., Zhang, W.-Z., et al., Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tube, Plant Cell, 2013, vol. 25, pp. 649–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kovaleva.

Additional information

Published in Russian in Ontogenez, 2016, Vol. 47, No. 3, pp. 138–151.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, L.V., Voronkov, A.S., Zakharova, E.V. et al. Exogenous IAA and ABA stimulate germination of petunia male gametophyte by activating Ca2+-dependent K+-channels and by modulating the activity of plasmalemma H+-ATPase and actin cytoskeleton. Russ J Dev Biol 47, 109–121 (2016). https://doi.org/10.1134/S1062360416030036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360416030036

Keywords

Navigation