Skip to main content
Log in

Germination and In Vitro Growth of Petunia Male Gametophyte Are Affected by Exogenous Hormones and Involve the Changes in the Endogenous Hormone Level

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The data obtained characterize the changes in the contents of endogenous phytohormones (IAA, cytokinins, GA, and ABA) in germinating pollen grains and growing pollen tubes of a self-compatible clone of petunia (sPetunia hybrida L.) within an 8-h period under in vitro conditions. The hydration and initiation of germination of pollen grains brought the ABA content down to a zero level, while the levels of GA, IAA, and cytokinins increased 1.5–2-fold. Later, in the growing pollen tubes, the GA content increased twofold, while the levels of IAA and cytokinins decreased. The exogenous ABA and GA3 considerably promoted pollen germination and pollen tube growth; however, only the treatment with GA3 produced the maximum length of pollen tubes. The exogenous IAA promoted and the exogenous cytokinins hindered the growth of pollen tubes. The membrane potential, as assessed with a potential-sensitive dye diS-C3-(5), considerably increased in the pollen grains treated with ABA and benzyladenine, whereas IAA and GA3 did not practically affect it. The authors conclude that the mature pollen grains contain the complete set of hormones essential for pollen germination and pollen tube growth. ABA, GA, and IAA together with cytokinins control the processes of pollen grain hydration, germination, and pollen tube growth, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

REFERENCES

  1. Taylor, L.P. and Hepler, P.K., Pollen Germination and Tube Growth, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 461–491.

    Article  PubMed  Google Scholar 

  2. Franklin-Tong, V.E., Signalling and the Modulation of Pollen Tube Growth, Plant Cell, 1999, vol. 11, pp. 727–738.

    Article  PubMed  Google Scholar 

  3. Lord, E.M. and Russell, S.D., The Mechanism of Pollination and Fertilization in Plants, Annu. Rev. Cell Dev. Biol., 2002, vol. 18, pp. 81–105.

    Article  PubMed  Google Scholar 

  4. Dearnaley, J.D., Levina, N.N., Lew, R.R., Heath, I.B., and Goring, D.R., Interrelationships between Cytoplasmic Ca2+ Peaks, Pollen Hydration and Plasma Membrane Conductances during Compatible and Incompatible Pollinations of Brassica napus Papillae, Plant Cell Physiol., 1997, vol. 38, pp. 985–999.

    PubMed  Google Scholar 

  5. Geitmann, A. and Cresti, M., Ca2+ Channels Control the Rapid Expansion in Pulsating Growth of Petunia hybrida Pollen Tubes, J. Plant Physiol., 1998, vol. 152, pp. 439–447.

    Google Scholar 

  6. Fan, L.-M., Wang, Y.-F., Wang, H., and Wu, W.-H., In Vitro Arabidopsis Pollen Germination and Characterization of the Inward Potassium Currents in Arabidopsis Pollen Grain Protoplasts, J. Exp. Bot., 2001, vol. 52, pp. 1603–1614.

    Article  PubMed  Google Scholar 

  7. Barendse, G.W.M., Pereira, A.S.R., Berkers, P.A., Driessen, F.M., Eyden-Emons, A., and Linskens, H.F., Growth Hormones in Pollen, Styles and Ovaries of Petunia hybrida and Lilium Species, Acta Bot. Neerl., 1970, vol. 19, pp. 175–185.

    Google Scholar 

  8. Stanley, R.G. and Linskens, H.F., Pollen (Biology, Biochemistry, Management), Berlin: Springer-Verlag, 1974.

    Google Scholar 

  9. O’Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q., and Halevy, A.H., Interorgan Regulation of Ethylene Biosynthetic Genes by Pollination, Plant Cell, 1993, vol. 5, pp. 419–432.

    Article  PubMed  Google Scholar 

  10. Baker, R.P. and Hasenstein, K.H., Hormonal Changes after Compatible and Incompatible Pollination in Theobroma cacao L., HortScience, 1997, vol. 32, pp. 1231–1234.

    Google Scholar 

  11. Kovaleva, L.V., Rakitin, V.Yu., and Dobrovol’skaya, A.A., Gametophyte-Sporophyte Interactions in the Pollen-Pistil System: 2. The Evolution of Ethylene and CO2 after Pollination, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 544–547 (Russ. J. Plant Physiol., Engl. Transl., pp. 474–477).

    Google Scholar 

  12. Kovaleva, L.V., Zakharova, E.V., and Minkina, Yu.V., Phytohormonal Regulation of Male Gametophyte in the Pollen-Pistil System, Dokl. Akad. Nauk, 2002, vol. 385, pp. 552–555.

    Google Scholar 

  13. Kovaleva, L. and Zakharova, E., Hormonal Status of the Pollen-Pistil System at the Progamic Phase of Fertilization after Compatible and Incompatible Pollination in Petunia hybrida L., Sex Plant Reprod., 2003, vol. 16, pp. 191–196.

    Article  Google Scholar 

  14. Kovaleva, L.V. and Zakharova, E.V., Gametophyte-Sporophyte Interactions in the Pollen-Pistil System: 4. The Hormonal Status and the Mechanism of Self-Incompatibility, Fiziol. Rast. (Moscow), 2004, vol. 51, pp. 446–451 (Russ. J. Plant Physiol., Engl. Transl., pp. 402–406).

    Google Scholar 

  15. Skorobogatova, I.V., Zakharova, E.V., Karsunkina, N.P., Kurapov, P.B., Sorkina, G.L., and Kislin, E.N., Changes in the Phytohormone Content in Barley Seedlings during Ontogeny and after Application of Growth Stimulators, Agrokhimiya, 1999, no. 8, pp. 49–53.

  16. Frankland, B. and Wareing, Ph., Effect of Gibberellic Acid on Hypocotyls Growth of Lettuce Seedlings, Nature, 1960, vol. 185, pp. 4700–4708.

    Google Scholar 

  17. Waggoner, A.S., Dye Indicators of Membrane Potential, Annu. Rev. Biophys. Bioeng., 1974, vol. 8, pp. 47–68.

    Article  Google Scholar 

  18. Andreev, I.M., Timofeeva, G.V., and Kovaleva, L.V., Generation of the Calcium Signal in Pollen Grains Triggered by Depolarization of the Plasma Membrane, Dokl. Akad. Nauk, 2005, vol. 400.

  19. Huang, J.C., Lin, S.M., and Wang, C.S., A Pollen-Specific and Desiccation-Associated Transcript in Lilium longiflorum during Development and Stress, Plant Cell Physiol., 2000, vol. 41, pp. 477–485.

    PubMed  Google Scholar 

  20. Singh, D.P., Jermakow, A.M., and Swain, S.M., Gibberellins Are Required for Seed Development and Pollen Tube Growth in Arabidopsis, Plant Cell, 2002, vol. 14, pp. 3133–3147.

    Article  PubMed  Google Scholar 

  21. Linskens, H.F., Translocation Phenomena in the Petunia Flower after Cross-and Self-Pollination, Fertilization in Higher Plants, Linskens, H.F., Ed., Amsterdam: North-Holland, 1974, pp. 285–289.

    Google Scholar 

  22. Kovaleva, L.V. and Komarova, E.N., Gametophytic Self-Incompatibility in Petunia: Dynamics of Carbohydrates during Pollen Tube Growth, Fiziol. Rast. (Moscow), 1993, vol. 40, pp. 260–264 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  23. Chatfield, S.P., Stimberg, P., Forde, B.G., and Leyser, O., The Hormonal Regulation of Axillary Bud Growth in Arabidopsis, Plant J., 2000, vol. 24, pp. 159–169.

    Article  PubMed  Google Scholar 

  24. Collet, C.E., Harberd, N.P., and Leyser, O., Hormonal Interactions in the Control of Arabidopsis Hypocotyl Elongation, Plant Physiol., 2000, vol. 124, pp. 553–562.

    Article  PubMed  Google Scholar 

  25. Hansen, H. and Grossman, K., Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition, Plant Physiol., 2000, vol. 124, pp. 1437–1448.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 584–590.

Original Russian Text Copyright © 2005 by Kovaleva, Zakharova, Minkina, Timofeeva, Andreev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovaleva, L.V., Zakharova, E.V., Minkina, Y.V. et al. Germination and In Vitro Growth of Petunia Male Gametophyte Are Affected by Exogenous Hormones and Involve the Changes in the Endogenous Hormone Level. Russ J Plant Physiol 52, 521–526 (2005). https://doi.org/10.1007/s11183-005-0077-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0077-7

Key words

Navigation