Skip to main content
Log in

Regeneration and fibrosis of corneal tissues

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Figueiredo, F., and Lako, M., Corneal epithelial stem cells: characterization, culture and transplantation, Regen. Med., 2006, vol. 1, pp. 29–44.

    Article  PubMed  CAS  Google Scholar 

  • Alio, J.L. and Javaloy, J., Corneal inflammation following corneal photoablative refractive surgery with excimer laser, Surv. Ophthalmol., 2013, vol. 58, pp. 11–25.

    Article  PubMed  Google Scholar 

  • Ariel, A. and Timor, O., Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis, J. Pathol., 2013, vol. 229, pp. 250–263.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Sabanero, K., Hoffmann, A., Judge, C., et al., Lens and retina regeneration: new perspectives from model organisms, Biochem. J., 2012, vol. 447, pp. 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Baum, J.L., Melanocyte and Langerhans cell population of the cornea and limbus in the albino animal, Am. J. Ophthalmol., 1970, vol. 69, pp. 669–676.

    PubMed  CAS  Google Scholar 

  • Bian, F., Liu, W., Yoon, K.-C., et al., Molecular signatures and biological pathway profiles of human corneal epithelial progenitor cells, Int. J. Biochem. Cell Biol., 2010, vol. 42, pp. 1142–1153.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Biernacka, A., Dobaczewski, M., and Frangogiannis, N.G., TGF-β signaling in fibrosis, Growth Factors, 2011, vol. 29, pp. 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, E.C., Liu, C.Y., and Yang, X., In vivo gene delivery and visualization of corneal stromal cells using an adenoviral vector and keratocyte-specific promoter, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, pp. 2194–2200.

    Article  PubMed  Google Scholar 

  • Chien, Y., Liao, Y.-W., and Liu, D.-M., Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel, Biomaterials, 2012, vol. 33, pp. 8003–8016.

    Article  PubMed  CAS  Google Scholar 

  • Clements, J.L. and Dana, R., Inflammatory corneal neovascularization: etiopathogenesis, Semin. Ophthalmol., 2011, vol. 26, pp. 235–245.

    Article  PubMed  Google Scholar 

  • Collinson, J.M., Morris, L., Reid, A.I., et al., Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium, Dev. Dyn., 2002, vol. 224, pp. 432–440.

    Article  PubMed  Google Scholar 

  • Del Monte, D.W. and Kim, T., Anatomy and physiology of the cornea, J. Cataract. Refract. Surg., 2011, vol. 37, pp. 588–598.

    Article  Google Scholar 

  • Du, Y., Funderburgh, M.L., Mann, M.M., et al., Multipotent stem cells in human corneal stroma, Stem Cells, 2005, vol. 23, pp. 1266–1275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, Y., Carlson, E.C., and Funderburgh, M.L., Stem cell therapy restores transparency to defective murine corneas, Stem Cells, 2009, vol. 27, pp. 1635–1642.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ebrahimi, M., Taghi-Abadi, E., and Baharvand, H., Limbal stem cells in review, J. Ophthalmic Vis. Res., 2009, vol. 4, pp. 40–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  • de la Fuente, M., Seijo, B., and Alonso, M.J., Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue, Gene Therapy, 2008, vol. 15, pp. 668–676.

    Article  PubMed  Google Scholar 

  • Galiacy, S.D., Fournie, P., and Massoudi, D., Matrix metalloproteinase 14 overexpression reduces corneal scarring, Gene Therapy, 2011, vol. 18, pp. 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Di Girolamo, N., Stem cells of the human cornea, British Med. Bull., 2011, vol. 100, pp. 191–207.

    Article  Google Scholar 

  • Grigoryan, E.N., Markitantova, Yu.V., Avdonin, P.P., et al., Study of regeneration in amphibians in age of moleculargenetic approaches and methods, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 46–62.

    Article  CAS  Google Scholar 

  • Grueterich, M., Espana, E.M., and Tseng, S.C., Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche, Surv. Ophthalmol., 2003, vol. 48, pp. 631–646.

    Article  PubMed  Google Scholar 

  • Hassell, J.R. and Birk, D.E., The molecular basis of corneal transparency, Exp. Eye Res., 2010, vol. 91, pp. 326–335.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi, R., Ishikawa, Y., Ito, M., et al., Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium, PLoS One, 2012, vol. 7, Article e45435, pp. 1–10.

    Google Scholar 

  • He, Z., Campolmi, N., and Gain, P., Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans, Stem Cells, 2012, vol. 30, pp. 2523–2534.

    Article  PubMed  CAS  Google Scholar 

  • Higa, K., Shimmurab, S., and Miyashita, H., Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells, Exp. Eye Res., 2005, vol. 81, pp. 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Holan, V. and Javorkova, E., Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction, Stem Cell Rev. Rep., 2013, vol. 9, pp. 609–619.

    Article  CAS  Google Scholar 

  • Huh, M.I., Kim, Y.H., and Park, J.H., Distribution of TGFbeta isoforms and signaling intermediates in corneal fibrotic wound repair, J. Cell Biochem., 2009, vol. 108, pp. 476–488.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, N.C., Proliferative capacity of the corneal endothelium, Prog. Retin. Eye Res., 2003, vol. 22, pp. 359–389.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, N.C., Proliferative capacity of corneal endothelial cells, Exp. Eye Res., 2012, vol. 95, pp. 16–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawashima, M., Kawakita, T., and Higa, K., Subepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium, Mol. Vis., 2010, vol. 16, pp. 2727–2732.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klausner, E.A., Peer, D., Chapman, R.L., et al., Corneal gene therapy, J. Control. Release, 2007, vol. 124, pp. 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Klausner, E.A., Zhang, Z., Chapman, R.L., et al., Ultrapure chitosan oligomers as carriers for corneal gene transfer, Biomaterials, 2010, vol. 31, pp. 1814–1820.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Hayashida, Y., Chen, Y.-T., and Tseng, S.C.G., Niche regulation of corneal epithelial stem cells at the limbus, Cell Res., 2007, vol. 17, no. 1, pp. 26–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, H.-F., Yung-Lai, Y.-C., Tai, C.-F., et al., Effects of cultured human adipose-derived stem cells transplantation on rabbit cornea regeneration after alkaline chemical burn, Kaohsiung J. Med. Sci., 2013, vol. 29, pp. 14–18.

    Article  PubMed  Google Scholar 

  • Liu, J., Saghizadeh, M., Tuli, S.S., et al., Different tropism of adenoviruses and adeno-associated viruses to corneal cells: implications for corneal gene therapy, Mol. Vis., 2008, vol. 14, pp. 2087–2096.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopashov, G.V. and Stroeva, O.G., Razvitie glaza v svete eksperimental’nykh issledovanii (Eye Development in the Light of Experimental Research), Moscow: Nauka, 1963.

    Google Scholar 

  • Luschmann, C., Herrmann, W., and Strauss, O., Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation, Int. J. Pharm., 2013, vol. 455, nos. 1–2, pp. 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Majo, F., Rochat, A., and Nicolas, M., Oligopotent stem cells are distributed throughout the mammalian ocular surface, Nature, 2008, vol. 456, pp. 250–254.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Blazejewska, E.A., Call, M.K., Yamanaka, O., et al., From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency, Stem Cells, 2011, vol. 29, pp. 57–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mimura, T., Yokoo, S., Araie, M., et al., Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium, Invest. Ophthalmol. Vis. Sci., 2005, vol. 46, pp. 3637–3644.

    Article  PubMed  Google Scholar 

  • Mimura, T., Yamagami, S., and Amano, S., Corneal endothelial regeneration and tissue engineering, Prog. Retin. Eye Res., 2013, vol. 35, pp. 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Mitashov, B.I., Genetic mechanisms of cell transdifferentiation, Russ. J. Dev. Biol., 2005, vol. 36, no. 4, pp. 240–246

    Article  Google Scholar 

  • Mohan, R.R., Tovey, J.C.K., Sharma, A., et al., Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo, PLoS One, 2011, vol. 6, no. 10. e26432.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mohan, R.R., Rodier, J.T., and Sharma, A., Corneal gene therapy: basic science and translational perspective, Ocul. Surf., 2013, vol. 11, pp. 150–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mort, R.L., Douvaras, P., Morley, S.D., et al., Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models, Results Probl. Cell Differ., 2012, vol. 55, pp. 357–394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura, H., Siddiqui, S.S., Shen, X., et al., RNA interference targeting transforming growth factor-β type II receptor suppresses ocular inflammation and fibrosis, Mol. Vis., 2004, vol. 10, pp. 703–711.

    PubMed  CAS  Google Scholar 

  • Ono, K., Yokoo, S., Mimura, T., et al., Autologous transplantation of conjunctival epithelial cells cultured on amniotic membrane in a rabbit model, Mol. Vis., 2007, vol. 13, pp. 1138–1143.

    PubMed  PubMed Central  Google Scholar 

  • Raghunathan, V., McKee, C., and Cheung, W., Influence of extracellular matrix proteins and substratum topography on corneal epithelial cell alignment and migration, Tissue Eng., 2013, vol. 19, pp. 1713–1722.

    Article  CAS  Google Scholar 

  • Saika, S., Ikeda, K., Yamanaka, O., et al., Therapeutic effects of adenoviral gene transfer of bone morphogenic protein-7 on a corneal alkali injury model in mice, Lab. Invest., 2005, vol. 85, pp. 474–486.

    Article  PubMed  CAS  Google Scholar 

  • Saika, S., TGFβ pathobiology in the eye, Lab. Invest., 2006, vol. 86, pp. 106–115.

    Article  PubMed  CAS  Google Scholar 

  • Saika, S., Yamanaka, O., Okada, Y., et al., Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice, Am. J. Physiol. Cell Physiol., 2007, vol. 293, pp. C75–C86.

    Article  PubMed  CAS  Google Scholar 

  • Saika, S., Yamanaka, O., Sumioka, T., et al., Fibrotic disorders in the eye: targets of gene therapy, Prog. Retin. Eye Res, 2008, vol. 27, pp. 177–196.

    Article  PubMed  CAS  Google Scholar 

  • Secker, G.A. and Daniels, J.T., Limbal epithelial stem cells of the cornea, in StemBook (Internet), Cambridge (MA): Harvard Stem Cell Institute, 2008, pp. 1–18.

    Google Scholar 

  • Sharma, A., Tandon, A., Tovey, J.C.K., et al., Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea, Nanomedicine, 2011, vol. 7, pp. 505–513.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma, A., Rodier, J.T., Tandon, A., et al., Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer, Mol. Vis., 2012, vol. 18, pp. 2598–2607.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shiraishi, A., Converse, R.L., and Liu, C.Y., Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer, Invest. Ophthalmol. Vis. Sci., 1998, vol. 39, pp. 2554–2561.

    PubMed  CAS  Google Scholar 

  • Sumioka, T., Ikeda, K., Okada, Y., et al., Inhibitory effect of blocking TGF-beta/Smad signal on injury-induced fibrosis of corneal endothelium, Mol. Vis., 2008, vol. 14, pp. 2272–2281.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takacs, L., Toth, E., Berta, A., and Vereb, G., Stem cells of the adult cornea: from cytometric markers to therapeutic applications, Cytometry A, 2009, vol. 75, pp. 54–66.

    Article  PubMed  Google Scholar 

  • Vantrappen, L., Geboes, K., Missotten, L., et al., Lymphocytes and Langerhans cells in the normal cornea, Invest. Ophthalmol. Vis. Sci., 1985, vol. 26, pp. 220–225.

    PubMed  CAS  Google Scholar 

  • Vemuganti, G.K., Fatima, A., Madhira, S.L., et al., Limbal stem cells: application in ocular biomedicine, Int. Rev. Cell Mol. Biol., 2009, vol. 275, pp. 133–181.

    Article  PubMed  Google Scholar 

  • Vrana, N.E., Lavalle, P., and Dokmeci, M.R., Engineering functional epithelium for regenerative medicine and in vitro organ models: a review, Tissue Eng. Part B, 2013, vol. 19, pp. 529–543.

    Article  CAS  Google Scholar 

  • West-Mays, J.A. and Dwivedi, D.J., The keratocyte: corneal stromal cell with variable repair phenotypes, Int. J. Biochem. Cell Biol., 2006, vol. 38, pp. 1625–1631.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson, S.E., Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency, Exp. Eye Res., 2012, vol. 99, pp. 78–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson, S.L., Yang, Y., and El Haj, A.J., Corneal stromal cell plasticity: in vitro regulation of cell phenotype through cell-cell interactions in a three-dimensional model, Tissue Eng. Part A, 2014, vol. 20, pp. 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Wynn, T.A., Integrating mechanisms of pulmonary fibrosis, J. Exp. Med., 2011, vol. 208, pp. 1339–1350.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wynn, T.A. and Ramalingam, T.R., Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat. Med., 2012, vol. 18, pp. 1028–1040.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu, J., Lamouille, S., and Derynck, R., TGF-β-induced epithelial to mesenchymal transition, Cell Res., 2009, vol. 19, pp. 156–172.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W.Y., Sheridan, C., Grierson, I., et al., Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma, J. Biomed. Biotechnol., 2011, Article ID 412743, pp. 1–13.

    Google Scholar 

  • Zeisberg, M. and Kalluri, R., Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis, Am. J. Physiol. Cell. Physiol., 2013, vol. 304, pp. C216–C225.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zorzi, G.K., Parraga, J.E., Seijo, B., and Sanchez, A., Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy, Macromol. Biosci., 2011, vol. 11, pp. 905–913.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Simirskii.

Additional information

Original Russian Text © V.N. Simirskii, 2014, published in Ontogenez, 2014, Vol. 45, No. 5, pp. 314–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simirskii, V.N. Regeneration and fibrosis of corneal tissues. Russ J Dev Biol 45, 257–266 (2014). https://doi.org/10.1134/S1062360414050099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414050099

Keywords

Navigation