Skip to main content

Advertisement

Log in

Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Ocular surface defects represent one of the most common causes of impaired vision or even blindness. For treatment, keratoplasty represents the first choice. However, if corneal defects are more extensive and associated with a limbal stem cell (LSC) deficiency, corneal transplantation is not a sufficient therapeutic procedure and only viable approach to treatment is the transplantation of LSCs. When the LSC deficiency is a bilateral disorder, autologous LSCs are not available. The use of allogeneic LSCs requires strong immunosuppression, which leads to side-effects, and the treatment is not always effective. The alternative and perspective approach to the treatment of severe ocular surface injuries and LSC deficiency is offered by the transplantation of autologous mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of the particular patient, grow well in vitro and can be transferred, using an appropriate scaffold, onto the damaged ocular surface. Here they exert beneficial effects by possible direct differentiation into corneal epithelial cells, by immunomodulatory effects and by the production of numerous trophic and growth factors. Recent experiments utilizing the therapeutic properties of MSCs in animal models with a mechanically or chemically injured ocular surface have yielded promising results and demonstrated significant corneal regeneration, improved corneal transparency and a rapid healing process associated with the restoration of vision. The use of autologous MSCs thus represents a promising therapeutic approach and offers hope for patients with severe ocular surface injuries and LSC deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: A global perspective. Bulletin of the World Health Organization, 79, 214–221.

    PubMed  CAS  Google Scholar 

  2. Forrester, J. V., & Kuffova, L. (2004). Corneal transplantation. London: Imperial College Press.

    Google Scholar 

  3. Al-Mohaimeed, M. M. (2013). Penetrating keratoplasty for keratoconus: Visual and graft survival outcomes. International Journal of Health Sciences (Qassim), 7, 67–74.

    Google Scholar 

  4. Huang, A. J., & Tseng, S. C. (1991). Corneal epithelial wound healing in the absence of limbal epithelium. Investigative Ophthalmology and Visual Science, 32, 96–105.

    PubMed  CAS  Google Scholar 

  5. Pellegrini, G., Rama, P., Mavilio, F., & De Luca, M. (2009). Epithelial stem cells in corneal regeneration and epidermal gene therapy. The Journal of Pathology, 217, 217–228.

    PubMed  CAS  Google Scholar 

  6. Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Surveys in Ophthalmology, 44, 415–425.

    CAS  Google Scholar 

  7. Schlötzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Experimental Eye Research, 81, 247–264.

    PubMed  Google Scholar 

  8. Nieto-Miguel, T., Calonge, M., de la Mata, A., López-Paniagua, M., Galindo, S., de la Paz, M. F., et al. (2011). A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium. Molecular Vision, 17, 2102–2117.

    PubMed  CAS  Google Scholar 

  9. Takács, L., Tóth, E., Losonczy, G., Szanto, A., Bähr-Ivacevic, T., Benes, V., et al. (2011). Differentially expressed genes associated with human limbal epithelial phenotypes: new molecules that potentially facilitate selection of stem cell-enriched populations. Investigative Ophthalmology and Visual Science, 52, 1252–1260.

    PubMed  Google Scholar 

  10. Notara, M., Alatza, A., Gilfillan, J., Harris, A. R., Levis, H. J., Schrader, S., et al. (2010). In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90, 188–195.

    PubMed  CAS  Google Scholar 

  11. Tseng, S. C. (1996). Regulation and clinical implication of corneal epithelial stem cells. Molecular Biology Reports, 23, 47–58.

    PubMed  CAS  Google Scholar 

  12. Lehrer, M. S., Sun, T. T., & Lavker, R. M. (1998). Strategies of epithelial repair: Modulation of stem cell and transit amplifying cell proliferation. Journal of Cell Science, 111, 2867–2875.

    PubMed  CAS  Google Scholar 

  13. Majo, F., Rochat, A., Nicolas, M., Jaoudé, G. A., & Barrandon, Y. (2008). Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 456, 250–254.

    PubMed  CAS  Google Scholar 

  14. Chang, C.-Y., Green, C. R., McGhee, C. N. J., & Sherwin, T. (2008). Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Investigative Ophthalmology and Visual Science, 49, 5279–5286.

    PubMed  Google Scholar 

  15. Dua, H. S., Miri, A., Alomar, T., Yeung, A. M., & Said, D. G. (2009). The role of limbal stem cells in corneal epithelial maintenance: Testing the dogma. Ophthalmology, 116, 856–863.

    PubMed  Google Scholar 

  16. Echevarria, T. J., & Di Girolamo, N. (2011). Tissue-regenerating, vision-restoring corneal epithelial stem cells. Stem Cell Reviews, 7, 256–268.

    PubMed  Google Scholar 

  17. Tan, D. J., Ficker, L. A., & Buckley, R. J. (1996). Limbal transplantation. Ophthalmology, 103, 29–36.

    PubMed  CAS  Google Scholar 

  18. Dua, H. S., & Azuara-Blanco, A. (1999). Allo-limbal transplantation in patients with limbal stem cell deficiency. British Journal of Ophthalmology, 83, 414–419.

    PubMed  CAS  Google Scholar 

  19. Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96, 709–722.

    PubMed  CAS  Google Scholar 

  20. Tsubota, K., Satake, Y., Kaido, M., Shinozaki, N., Shimmura, S., Bissen-Miyajima, H., et al. (1999). Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. The New England Journal of Medicine, 340, 1697–1703.

    PubMed  CAS  Google Scholar 

  21. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349, 990–993.

    PubMed  CAS  Google Scholar 

  22. Daya, S. M., Bell, R. W., Habib, N. E., Powel-Richards, A., & Dua, H. S. (2000). Clinic and pathologic findings in human keratolimbal allograft rejection. Cornea, 19, 443–450.

    PubMed  CAS  Google Scholar 

  23. Cauchi, P. A., Ang, G. S., Azuara-Blanco, A., & Burr, J. M. (2008). A systematic literature review of surgical interventions for limbal stem cell deficiency in humans. American Journal of Ophthalmology, 146, 251–259.

    PubMed  Google Scholar 

  24. Mills, R. A., Coster, D. J., & Williams, K. A. (2002). Effect of immunosuppression on outcome measures in a model of rat limbal transplantation. Investigative Ophthalmology and Visual Sciences, 43, 647–655.

    Google Scholar 

  25. Lencova, A., Pokorna, K., Zajicova, A., Krulova, M., Filipec, M., & Holan, V. (2011). Graft survival and cytokine production in the experimental mouse model of limbal transplantation. Transplant Immunology, 24, 189–194.

    PubMed  CAS  Google Scholar 

  26. Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363, 147–155.

    PubMed  CAS  Google Scholar 

  27. Marchini, G., Pedrotti, E., Pedrotti, M., Barbaro, V., Di Iorio, E., Ferrari, S., et al. (2011). Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clinical and Experimental Ophthalmology, 40, 255–267.

    PubMed  Google Scholar 

  28. Basu, S., Ali, H., & Sangwan, V. S. (2012). Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. American Journal of Ophthalmology, 153, 643–650.

    PubMed  Google Scholar 

  29. Shortt, A. J., Secker, G. A., Notara, M. D., Limb, G. A., Khaw, P. T., Tuft, S. J., et al. (2007). Transplantation of ex vivo cultured limbal epithelial stem cells: A review of techniques and clinical results. Survey of Ophthalmology, 52, 483–502.

    PubMed  Google Scholar 

  30. Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. In H. Brewitt (Ed.), Research projects in dry eye syndrome, vol. 45 (pp. 57–70). Basel: Developmental Ophthalmology.

    Google Scholar 

  31. Nakamura, T., & Kinoshita, S. (2003). Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea, 22, S75–S80.

    PubMed  Google Scholar 

  32. Liu, J., Sheha, H., Fu, Y., Giegengack, M., & Tseng, S. C. (2011). Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. American Journal of Ophthalmollogy, 152, 739–747.

    Google Scholar 

  33. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. British Journal of Ophthalmology, 88, 1280–1284.

    PubMed  CAS  Google Scholar 

  34. Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351, 1187–1196.

    PubMed  CAS  Google Scholar 

  35. Blazejewska, E. A., Schlotzer-Schrehardt, U., Zenkel, M., Bachmann, B., Chankiewitz, E., Jacobi, C., et al. (2009). Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells, 27, 642–652.

    PubMed  CAS  Google Scholar 

  36. Yang, X., Moldovan, N. I., Zhao, Q., Mi, S., Zhou, Z., Chen, D., et al. (2008). Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Molecular Vision, 14, 1064–1070.

    PubMed  CAS  Google Scholar 

  37. Phinney, D. G., & Prockop, D. J. (2007). Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25, 2896–2902.

    PubMed  Google Scholar 

  38. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    PubMed  CAS  Google Scholar 

  39. Gu, S., Xing, C., Han, J., Tso, M. O. M., & Hong, J. (2009). Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Molecular Vision, 15, 99–107.

    PubMed  CAS  Google Scholar 

  40. Jiang, T. S., Cai, L., Ji, W. Y., Hui, Y. N., Wang, Y. S., Hu, D., et al. (2010). Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Molecular Vision, 16, 1304–1316.

    PubMed  Google Scholar 

  41. Martinez-Conesa, E. M., Espel, E., Reina, M., & Casaroli-Marano, R. P. (2012). Characterization of ocular surface epithelial and progenitor cell markers in human adipose stromal cells derived from lipoaspirates. Investigative Ophthalmology and Visual Sciences, 53, 513–520.

    CAS  Google Scholar 

  42. Agorogiannis, G. I., Alexaki, V. I., Castana, O., & Kymionis, G. D. (2012). Topical application of autologous adipose-derived mesenchymal stem cells (MSCs) for persistent sterile corneal epitelial defect. Graefe´s Archives of Clinical and Experimental Ophthalmology, 250, 455–457.

    Google Scholar 

  43. Lan, Y., Kodati, S., Lee, H. S., Omoto, M., Jin, Y., & Chauhan, S. K. (2012). Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology and Visual Sciences, 53, 3638–3644.

    CAS  Google Scholar 

  44. Oh, J. Y., Roddy, G. W., Choi, H., Lee, R. H., Ylöstalo, J. H., Rosa, R. H., Jr., et al. (2010). Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences USA, 107, 16875–16880.

    CAS  Google Scholar 

  45. Yao, L., Li, Z. R., Su, W. R., Li, Y. P., Lin, M. L., Zhang, W. X., et al. (2012). Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One, 7, e30842.

    PubMed  CAS  Google Scholar 

  46. Roddy, G. W., Oh, J. Y., Lee, R. H., Bartosh, T. J., Ylostalo, J., Coble, K., et al. (2011). Action at a distance: Systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells, 29, 1572–1579.

    PubMed  CAS  Google Scholar 

  47. Casaroli-Marano, R. P., Nieto-Nicolau, N., & Martínez-Conesa, E. M. (2012). Progenitor cells for ocular surface regenerative therapy. Ophthalmic Research, 49, 115–121.

    PubMed  Google Scholar 

  48. Otto, W. R., & Wright, N. A. (2011). Mesenchymal stem cells: From experiment to clinic. Fibrogenesis Tissue Repair, 4, 20.

    PubMed  CAS  Google Scholar 

  49. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.

    PubMed  CAS  Google Scholar 

  50. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    PubMed  CAS  Google Scholar 

  51. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    PubMed  Google Scholar 

  52. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 42–48.

    PubMed  Google Scholar 

  53. Le Blanc, K., & Ringdén, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262, 509–525.

    PubMed  Google Scholar 

  54. Ghannnam, S., Pene, J., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185, 302–312.

    Google Scholar 

  55. Svobodova, E., Krulova, M., Zajicova, A., Prochazkova, J., Trosan, P., & Holan, V. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T cells into anti-inflammatory regulatory T cell and proinflammatory helper T-cell 17 population. Stem Cells and Development, 21, 901–910.

    PubMed  CAS  Google Scholar 

  56. Xu, G., Zhang, L., Ren, G., Yuan, Z., Zhang, Y., Zhao, R. C., et al. (2007). Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Research, 17, 240–248.

    PubMed  CAS  Google Scholar 

  57. Le Blanc, K., Rasmusson, I., Sundberg, B., Götherströmm, C., Hassan, M., Uzumel, M., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.

    PubMed  Google Scholar 

  58. Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.

    PubMed  Google Scholar 

  59. Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.

    PubMed  CAS  Google Scholar 

  60. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    PubMed  CAS  Google Scholar 

  61. Augello, A., Tasso, R., Negrini, S. M., Cancedda, R., & Pennesi, G. (2007). Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis and Rheumatism, 56, 1175–1186.

    PubMed  CAS  Google Scholar 

  62. Jia, Z., Jiao, C., Zhao, S., Li, X., Ren, X., Zhang, L., et al. (2012). Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Experimental Eye Research, 102, 44–49.

    PubMed  CAS  Google Scholar 

  63. Oh, J. Y., Lee, R. H., Yu, J. M., Ko, J. H., Lee, H. J., Ko, A. Y., et al. (2012). Intravenous mesenchymal stem cells prevent rejection of allogeneic corneal transplants by aborting the early inflammatory response. Molecular Therapy, 20, 2143–2152.

    PubMed  CAS  Google Scholar 

  64. Holan, V., Pokorna, K., Prochazkova, J., Krulova, M., & Zajicova, A. (2010). Immunoregulatory properties of mouse limbal stem cells. Journal of Immunology, 184, 2124–2129.

    CAS  Google Scholar 

  65. Bian, F., Qi, H., Ma, P., Zhang, L., Yoon, K. C., Pflugfelder, S. C., et al. (2010). An immunoprotective privilege of corneal epithelial stem cells against Th17 inflammatory stress by producing glial cell-derived neurotrophic factor. Stem Cells, 28, 2172–2181.

    PubMed  CAS  Google Scholar 

  66. Garfias, Y., Nieves-Hernandez, J., Garcia-Mejia, M., Estrada-Reyes, C., & Jimenez-Martinez, M. C. (2012). Stem cells isolated from the human stromal limbus possess immunosuppressant properties. Molecular Vision, 18, 2087–2095.

    PubMed  CAS  Google Scholar 

  67. Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.

    PubMed  Google Scholar 

  68. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.

    CAS  Google Scholar 

  69. Păunescu, V., Deak, E., Herman, D., Siska, I. R., Tănasie, G., Bunu, C., et al. (2007). In vitro differentiation of human mesenchymal stem cells to epithelial lineage. Journal of Cellullar and Molecular Medicine, 11, 502–508.

    Google Scholar 

  70. Arnalich-Montiel, F., Pastor, S., Blazquez-Martinez, A., Fernandez-Delgado, J., Nistal, M., Alio, J. L., et al. (2008). Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells, 26, 570–579.

    PubMed  CAS  Google Scholar 

  71. Reza, H. M., Ng, B. Y., Gimeno, F. L., Phan, T. T., & Ang, L. P. (2011). Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Reviews, 7, 935–947.

    PubMed  Google Scholar 

  72. Bieback, K., & Brinkmann, I. (2010). Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World Journal of Stem Cells, 2, 81–92.

    PubMed  Google Scholar 

  73. Ahmad, S., Stewart, R., Yung, S., Kolli, S., Armstrong, L., Stojkovic, M., et al. (2007). Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells, 25, 45–55.

    Google Scholar 

  74. Notara, M., Hernandez, D., Mason, C., & Daniels, J. T. (2012). Characterization of the phenotype and functionality of corneal epithelial cells derived from mouse embryonic stem cells. Regenerative Medicine, 7, 167–178.

    PubMed  CAS  Google Scholar 

  75. Gomes, J. A., Geraldes Monteiro, B., Melo, G. B., Smith, R. L., Pereira, C., da Silva, M., Lizier, N. F., et al. (2010). Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology and Visual Science, 51, 1408–1414.

    PubMed  Google Scholar 

  76. Monteiro, B. G., Serafim, R. C., Melo, G. B., Silva, M. C., Lizier, N. F., Maranduba, C. M., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Proliferation, 42, 587–594.

    PubMed  CAS  Google Scholar 

  77. Kotton, D. N., Ma, B. Y., Cardoso, W. V., Sanderson, E. A., Summer, R. S., Williams, M. C., et al. (2001). Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 128, 5181–5188.

    PubMed  CAS  Google Scholar 

  78. Janes, S. M., Lowel, S., & Hutter, C. (2002). Epidermal stem cells. The Journal of Pathology, 197, 479–491.

    PubMed  Google Scholar 

  79. Wang, G., Bunnell, B. A., Painter, R. G., Quiniones, B. C., Tom, S., Lanson, N. A., Jr., et al. (2005). Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proceedings of National Academy of Sciences USA, 102, 186–191.

    CAS  Google Scholar 

  80. Trosan, P., Svobodova, E., Chudickova, M., Krulova, M., Zajicova, A., & Holan, V. (2012). The key role of insulin-like growth factor I in limbal stem cell differentiation and corneal wound healing process. Stem Cells and Development, 21, 3341–3350.

    PubMed  CAS  Google Scholar 

  81. Liu, H., Zhang, J., Liu, C. Y., Hayashi, Y., & Kao, W. W. (2012). Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. Journal of Cellular and Molecular Medicine, 16, 1114–1124.

    PubMed  CAS  Google Scholar 

  82. Hou, G. H., Ye, N., Wu, J., Xu, J. T., Shi, W. J., Chen, Y., et al. (2010). Preliminary study of human mesenchymal stem cell differentiation into epithelial-like cells. Zhonghua Yan Ke Za Zhi, 46, 719–724.

    PubMed  Google Scholar 

  83. Ma, Y., Xi, Y., Xiao, Z., Yang, W., Zhang, C., Song, E., et al. (2006). Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells, 24, 315–321.

    PubMed  Google Scholar 

  84. Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R., et al. (2008). The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells, 26, 1047–1055.

    PubMed  CAS  Google Scholar 

  85. Reinshagen, H., Auw-Haedrich, C., Sorg, R. V., Boehringer, D., Eberwein, P., Schwartzkopff, J., et al. (2011). Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmologica, 89, 741–748.

    PubMed  Google Scholar 

  86. Zajicova, A., Pokorna, K., Lencova, A., Krulova, M., Svobodova, E., Kubinova, S., et al. (2010). Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplantation, 19, 1281–1290.

    PubMed  Google Scholar 

  87. Liu, H., Zhang, J., Liu, C. Y., Wang, I. J., Sieber, M., Chang, J., et al. (2010). Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One, 5(5), e10707.

    PubMed  Google Scholar 

  88. Sykova, E., Jendelova, P., Urdzikova, L., Lesny, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels – two strategies for spinal cord injury repair. Cellular and Molecular Neurobiolology, 25, 1113–1129.

    Google Scholar 

  89. Dubios, G., Segers, V. F., Bellamy, V., Sabbah, L., Peyrard, S., Bruneval, P., et al. (2008). Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. Journal of Biomedical Materials Research - Part B, 87, 222–228.

    Google Scholar 

  90. Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72, 1478–1485.

    PubMed  CAS  Google Scholar 

  91. Schwab, I. R., Johnson, N. T., & Harkim, D. G. (2006). Inherent risks associated with manufacture of bioengineered ocular surface tissue. Archives of Ophthalmology, 124, 1734–1740.

    PubMed  Google Scholar 

  92. Shimazaki, J., Aiba, M., Goto, E., Kato, N., Shimmura, S., & Tsubota, K. (2002). Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology, 109, 1285–1290.

    PubMed  Google Scholar 

  93. Di Girolamo, N., Chui, J., Wakefield, D., & Coroneo, M. T. (2007). Cultured human ocular surface epithelium on therapeutic contact lenses. British Journal of Ophthalmology, 91, 459–464.

    PubMed  Google Scholar 

  94. Holan, V., Chudickova, M., Trosan, P., Svobodova, E., Krulova, M., Kubinova, S., et al. (2011). Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. Journal of Controlled Release, 156, 406–412.

    PubMed  CAS  Google Scholar 

  95. Holan, V., Javorkova, E., Trosan, P. (2013). The growth and delivery of mesenchymal and limbal stem cells using copolymer polyamide 6/12 nanofiber scaffolds. In B. Wright and C. J. Connon (Eds.), Corneal Regenerative Medicine, in press, Springer Press.

  96. Xing, X., Wang, Y., & Li, B. (2008). Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Optics Express, 16, 10815–10822.

    PubMed  CAS  Google Scholar 

  97. Niece, K. L., Hartgerink, J. D., Donners, J. J., & Stupp, S. I. (2003). Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society, 125, 7146–7147.

    PubMed  CAS  Google Scholar 

  98. Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishma, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composite Sciences and Technlogy, 63, 2223–2253.

    CAS  Google Scholar 

  99. Martins, A., & Reis, R. L. (2008). Electrospinning processing technique for tissue engineering scaffolding. International Materials Reviews, 53, 257–274.

    CAS  Google Scholar 

  100. Nur-E-Kamal, A., Ahmed, I., Kamal, J., Schindler, M., & Meiners, S. (2006). Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells, 24, 426–433.

    PubMed  Google Scholar 

  101. Shih, Y. R., Chen, C. N., Tsai, S. W., Wang, Y. J., & Lee, O. K. (2006). Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 24, 2391–2397.

    PubMed  CAS  Google Scholar 

  102. Xin, X., Hussain, M., & Mao, J. J. (2007). Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials, 28, 316–325.

    PubMed  CAS  Google Scholar 

  103. Sirc, J., Kubinova, S., Hobzova, R., Stranska, D., Kozlik, P., Bosakova, Z., et al. (2012). Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal of Nanomedicine, 7, 5315–5325.

    PubMed  CAS  Google Scholar 

  104. Merrell, J. G., McLaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., & Nair, L. S. (2009). Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology and Physiology, 36, 1149–1156.

    PubMed  CAS  Google Scholar 

  105. Wang, F., Li, Z., Tamama, K., Sen, C. K., & Guan, J. (2009). Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules, 10, 2609–2618.

    PubMed  CAS  Google Scholar 

  106. Wang, H. S., Fu, G. D., & Li, X. S. (2009). Functional polymeric nanofibers from electrospinning. Recent Patents on Nanotechnology, 3, 21–31.

    PubMed  Google Scholar 

  107. Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8, 375–392.

    PubMed  CAS  Google Scholar 

  108. Hu, N., Zhang, Y. Y., Gu, H. W., & Guan, H. J. (2012). Effects of bone marrow mesenchymal stem cells on cell proliferation and growth factor expression of limbal epithelial cells in vitro. Ophthalmic Research, 48, 82–88.

    PubMed  CAS  Google Scholar 

  109. Zhang, J., Huang, C., Feng, Y., Li, Y., & Wang, W. (2012). Comparison of beneficial factors for corneal wound-healing of rat mesenchymal stem cells and corneal limbal stem cells on the xenogeneic acellular corneal matrix in vitro. Molecular Vision, 18, 161–173.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants P304/11/0653 and P301/11/1568 from the Grant Agency of the Czech Republic, project no. 668012 from the Grant Agency of the Charles University, and the projects MSM0021620858 and SVV 265211 from the Ministry of Education of the Czech Republic.

Disclosures

The authors indicate no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Holan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holan, V., Javorkova, E. Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction. Stem Cell Rev and Rep 9, 609–619 (2013). https://doi.org/10.1007/s12015-013-9449-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9449-0

Keywords

Navigation