Skip to main content

Corneal Regeneration: Current Status and Future Prospective

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

The human cornea is an avascular and transparent tissue which is responsible for the three-fourths of the total refractive power of the eye. It undergoes continuous stress due to the dust, pollution, infection and other environmental insults which may lead to dryness and abrasion injuries. Diseases of the cornea show wide spectrum of manifestations including corneal opacity, conjunctivalization, scarring, limbal stem cell deficiency and immune disorders and may result in blindness. The field of regenerative medicine has shown a great promise in the last two decades. Almost 30 years have been passed since the corneal epithelial stem cells were first reported to be localized in the limbus, a transition zone between the transparent cornea and opaque sclera. During these years, various efforts have been made for the corneal regeneration, including the cell and tissue engineering-based approaches and development of surgical modalities. However, a successful therapy for bilateral corneal diseases remains elusive. We put in here our perspective about the past, the present and the foreseeable future of regeneration and reconstruction of the human cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AM:

Amniotic membrane

BSCVA:

Best spectacle-corrected visual acuity

CESCs:

Corneal epithelial stem cells

CLET:

Cultivated limbal epithelial transplantation

COMET:

Cultivated oral mucosal epithelial transplantation

COPs:

Corneal precursors

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

HCECs:

Human corneal endothelial cells

iPSCs:

Induced pluripotent stem cells

LESCs:

Limbal epithelial stem cells

LSCD:

Limbal stem cell deficiency

LSCs:

Limbal stem cells

MSCs:

Mesenchymal stromal cells

OSR:

Ocular surface reconstruction

SLET:

Simple limbal epithelial transplantation

TACs:

Transient amplifying cells

References

  1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.

    Article  PubMed  Google Scholar 

  2. Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134:7–23.

    Article  CAS  PubMed  Google Scholar 

  3. Hanna C, Bicknell DS, O’brien JE. Cell turnover in the adult human eye. Arch Ophthalmol. 1961;65:695–8.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobsen IE, Jensen OA, Prause JU. Structure and composition of Bowman’s membrane. Study by frozen resin cracking. Acta Ophthalmol (Copenh). 1984;62:39–53.

    Article  CAS  Google Scholar 

  5. Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci. 1984;25:1402–15.

    CAS  PubMed  Google Scholar 

  6. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–89.

    Article  CAS  PubMed  Google Scholar 

  7. Lwigale PY. Corneal development: different cells from a common progenitor. Prog Mol Biol Transl Sci. 2015;34:43–59.

    Article  Google Scholar 

  8. Treacy O, Fahy G, Ritter T, O’Flynn L. Corneal immunosuppressive mechanisms, anterior chamber-associated immune deviation (ACAID) and their role in allograft rejection. Methods Mol Biol. 2016;1371:205–14.

    Article  CAS  PubMed  Google Scholar 

  9. Niederkorn JY. Corneal transplantation and immune privilege. Int Rev Immunol. 2013;32:57–67.

    Article  CAS  PubMed  Google Scholar 

  10. Griffith M, Alarcon EI, Brunette I. Regenerative approaches for the cornea. J Intern Med. 2016;280(3):276–86.

    Article  CAS  PubMed  Google Scholar 

  11. Vazirani J, Mariappan I, Ramamurthy S, Fatima S, Basu S, Sangwan VS. Surgical management of bilateral limbal stem cell deficiency. Ocul Surf. 2016;14:350–64.

    Article  PubMed  Google Scholar 

  12. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De LM. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3.

    Article  CAS  PubMed  Google Scholar 

  13. Tsai RJ, Li L, Chen J. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. Am J Ophthalmol. 2000;130:543.

    Article  CAS  PubMed  Google Scholar 

  14. Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145:769–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun TT, Tseng SC, Lavker RM. Location of corneal epithelial stem cells. Nature. 2010;463:E10–1.

    Article  CAS  PubMed  Google Scholar 

  16. Di GN, Bobba S, Raviraj V, et al. Tracing the fate of limbal epithelial progenitor cells in the murine cornea. Stem Cells. 2015;33:157–69.

    Article  Google Scholar 

  17. Takacs L, Toth E, Berta A, et al. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry. 2009;75:54–66.

    Article  PubMed  Google Scholar 

  18. Goldberg MF, Bron AJ. Limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1982;80:155–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560–1.

    Article  CAS  PubMed  Google Scholar 

  20. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.

    CAS  PubMed  Google Scholar 

  21. Funderburgh JL, Funderburgh ML, Du Y. Stem cells in the limbal stroma. Ocul Surf. 2016;14:113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dravida S, Pal R, Khanna A, et al. The transdifferentiation potential of limbal fibroblast-like cells. Brain Res Dev Brain Res. 2005;160:239–51.

    Article  CAS  PubMed  Google Scholar 

  23. Polisetty N, Fatima A, Madhira SL, et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis. 2008;14:431–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh V, Jaini R, Torricelli AA, et al. A method to generate enhanced GFP+ chimeric mice to study the role of bone marrow-derived cells in the eye. Exp Eye Res. 2013;116:366–70.

    Article  CAS  PubMed  Google Scholar 

  25. Singh V, Jaini R, Torricelli AA, et al. TGFbeta and PDGF-B signaling blockade inhibits myofibroblast development from both bone marrow-derived and keratocyte-derived precursor cells in vivo. Exp Eye Res. 2014;121:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshida S, Shimmura S, Shimazaki J, et al. Serum-free spheroid culture of mouse corneal keratocytes. Invest Ophthalmol Vis Sci. 2005;46:1653–8.

    Article  PubMed  Google Scholar 

  27. Engelmann K, Bohnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 1988;29:1656–62.

    CAS  PubMed  Google Scholar 

  28. Whikehart DR, Parikh CH, Vaughn AV, et al. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.

    CAS  PubMed  Google Scholar 

  29. Amano S, Yamagami S, Mimura T, et al. Corneal stromal and endothelial cell precursors. Cornea. 2006;25:S73–7.

    Article  PubMed  Google Scholar 

  30. McGowan SL, Edelhauser HF, Pfister RR, et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.

    CAS  PubMed  Google Scholar 

  31. Li G, Xu F, Zhu J, et al. Transcription factor PAX6 (paired box 6) controls limbal stem cell lineage in development and disease. J Biol Chem. 2015;290:20448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasamoto Y, Hayashi R, Park SJ, et al. PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes. Sci Rep. 2016;6:20807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shukla S, Mishra R. Functional analysis of missense mutations G36A and G51A in PAX6, and PAX6(5a) causing ocular anomalies. Exp Eye Res. 2011;93:40–9.

    Article  CAS  PubMed  Google Scholar 

  34. Shukla S, Mishra R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform PAX6. Interdiscip Sci. 2012;4:54–73.

    Article  CAS  PubMed  Google Scholar 

  35. Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakatsu MN, Ding Z, Ng MY, et al. Wnt/beta-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2011;52:4734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mei H, Nakatsu MN, Baclagon ER, et al. Frizzled 7 maintains the undifferentiated state of human limbal stem/progenitor cells. Stem Cells. 2014;32:938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007;25:1145–55.

    Article  CAS  PubMed  Google Scholar 

  39. Mikhailova A, Ilmarinen T, Uusitalo H, et al. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2014;2:219–31.

    Article  CAS  Google Scholar 

  40. Chan AA, Hertsenberg AJ, Funderburgh ML, et al. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLoS One. 2013;8:e56831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23:1340–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCabe KL, Kunzevitzky NJ, Chiswell BP, et al. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10:e0145266.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016;531:376–80.

    Article  CAS  PubMed  Google Scholar 

  44. Foster JW, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286. doi:10.1038/srep41286.

  45. Susaimanickam PJ, Maddileti S, Kumar V,et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017 May 30. pii: dev.143040. doi:10.1242/dev.143040.

  46. Basu S, Hertsenberg AJ, Funderburgh ML, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6:266ra172.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harkin DG, Foyn L, Bray LJ, et al. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells. 2015;33:785–91.

    Article  CAS  PubMed  Google Scholar 

  48. Singh V, Shukla S, Ramachandran C, et al. Science and art of cell-based ocular surface regeneration. Int Rev Cell Mol Biol. 2015;319:45–106.

    Article  PubMed  Google Scholar 

  49. Shukla S, Tavakkoli F, Singh V, et al. Mesenchymal stem cell therapy for corneal diseases. Expert Opin Orphan Drugs. 2016. doi:10.1080/21678707.2016.1215906.

  50. Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells. 2008;26:1047–55.

    Article  CAS  PubMed  Google Scholar 

  51. Buznyk O, Pasyechnikova N, Islam MM, et al. Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clin Transl Sci. 2015;8:558–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang L, Ma R, Du G, et al. Biocompatibility of helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials in a rabbit corneal model. J Biomed Mater Res B Appl Biomater. 2015;103:204–11.

    Article  PubMed  Google Scholar 

  53. Kim DK, Sim BR, Khang G. Nature-derived aloe vera gel blended silk fibroin film scaffolds for cornea endothelial cell regeneration and transplantation. ACS Appl Mater Interfaces. 2016;8:15160–8.

    Article  CAS  Google Scholar 

  54. Kumar P, Satyam A, Fan X, et al. Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular Crowders. Tissue Eng Part C Methods. 2015;21:660–70.

    Article  CAS  PubMed  Google Scholar 

  55. Uzunalli G, Soran Z, Erkal TS, et al. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater. 2014;10:1156–66.

    Article  CAS  PubMed  Google Scholar 

  56. Mirazul IM, Cepla V, He C, et al. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015;12:70–80.

    Article  Google Scholar 

  57. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.

    Article  CAS  PubMed  Google Scholar 

  58. Mariappan I, Maddileti S, Savy S, et al. In vitro culture and expansion of human limbal epithelial cells. Nat Protoc. 2010;5:1470–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ramachandran C, Basu S, Sangwan VS, et al. Concise review: the coming of age of stem cell treatment for corneal surface damage. Stem Cells Transl Med. 2014;3:1160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakamura T, Inatomi T, Sotozono C, et al. Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol Scand. 2004;82:468–71.

    Article  PubMed  Google Scholar 

  61. Sangwan VS, Matalia HP, Vemuganti GK, et al. Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol. 2006;54:29–34.

    Article  PubMed  Google Scholar 

  62. Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363:147–55.

    Article  CAS  PubMed  Google Scholar 

  63. Sangwan VS, Basu S, Vemuganti GK, et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol. 2011;95:1525–9.

    Article  PubMed  Google Scholar 

  64. Nakamura T, Inatomi T, Sotozono C, et al. Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res. 2016;51:187–207.

    Article  PubMed  Google Scholar 

  65. Ballen PH. Mucous membrane grafts in chemical (lye) burns. Am J Ophthalmol. 1963;55:302–12.

    Article  CAS  PubMed  Google Scholar 

  66. Gipson IK, Geggel HS, Spurr-Michaud SJ. Transplant of oral mucosal epithelium to rabbit ocular surface wounds in vivo. Arch Ophthalmol. 1986;104:1529–33.

    Article  CAS  PubMed  Google Scholar 

  67. Sotozono C, Inatomi T, Nakamura T, et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology. 2013;120:193–200.

    Article  PubMed  Google Scholar 

  68. Gaddipati S, Muralidhar R, Sangwan VS, et al. Oral epithelial cells transplanted on to corneal surface tend to adapt to the ocular phenotype. Indian J Ophthalmol. 2014;62:644–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sangwan VS, Basu S, MacNeil S, et al. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:931–4.

    Article  PubMed  Google Scholar 

  70. Bhalekar S, Basu S, Sangwan VS. Successful management of immunological rejection following allogeneic simple limbal epithelial transplantation (SLET) for bilateral ocular burns. BMJ Case Rep. 2013. doi:10.1136/bcr-2013-009051.

  71. Bhalekar S, Basu S, Lal I, et al. Successful autologous simple limbal epithelial transplantation (SLET) in previously failed paediatric limbal transplantation for ocular surface burns. BMJ Case Rep. 2013;1–3.

    Google Scholar 

  72. Basu S, Sureka SP, Shanbhag SS, et al. Simple Limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology. 2016;123:1000–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Sachin Shukla acknowledges the funding and support from the INSPIRE Faculty grant (No. IFA14-LSBM-104), from the Department of Science and Technology, Govt. of India. We are thankful to Mr. Abhinav R. Kethiri and Ms. Harsha Agarwal for their help in designing some of the figures. We acknowledge Ms. Nazia and Mr. S.B.N. Chary for their help in providing the clinical photographs of the patient’s eyes.

Conflict of Interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender S. Sangwan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shukla, S., Singh, V., Mariappan, I., Sangwan, V.S. (2017). Corneal Regeneration: Current Status and Future Prospective. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_23

Download citation

Publish with us

Policies and ethics