Skip to main content
Log in

Development of the muscle system and contractile activity in the mussel Mytilus trossulus (Mollusca, Bivalvia)

  • Regulation of Animal Organogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The development of contractile apparatus was subjected to comparative analysis during ontogenesis of the mussel Mytilus trossulus. Indirect immunofluorescence with the polyclonal antibody against mussel twitchin, a protein of thick filaments, and fluorescent phalloidin as a marker of filamentous cell actin were used to monitor changes in the developing muscle system at different larval stages. The first definitive muscle structures were found at the late trochophore stage (36 h after fertilization) and starting from the midveliger stage (96h), striated muscles, which are never present in adult mussels, were distinctly seen. The striated muscle periodicity was 1.25 μm in both mussel larvae and adult scallop. The contractile activities of veliger and adult muscles were measured using an electronic signal-processing video workstation. This work is the first complex study of morphological, biochemical, and physiological characteristics of the muscle system in the larvae and adult molluscs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butler, T.M., Mooers, S.U., Li, C., et al., Regulation of Catch Muscle by Twitchin Phosphorylation: Effects on Force, ATPase, and Shortening, Biophys. J., 1998, vol. 75, pp. 1904–1914.

    PubMed  CAS  Google Scholar 

  • Cragg, S.M., The Adductor and Retractor Muscles of the Veliger of Pecten maximus L. (Bivalvia), J. Moll. Stud., 1985, vol. 51, pp. 276–283.

    Google Scholar 

  • Cragg, S.M., The Phylogenetic Significance of Some Anatomical Features of Bivalve Veliger Larvae, Origin and Evolutionary Radiation of the Mollusca, Taylor, G.L., Ed., Oxford: Oxford Univ., 1996, pp. 371–380.

    Google Scholar 

  • Cragg, S.M. and Crisp, D.J., The Biology of Scallop Larvae, Biology, Ecology and Aquaculture of Scallops, Shumway, S.E., Ed., Amsterdam: Elsevier, 1991, pp. 75–132.

    Google Scholar 

  • Elliott, A., The Arrangement of Myosin on the Surface of Paramyosin Filaments in the White Adductor Muscle of Crassostrea angulata, Proc. R. Soc., London, 1974, vol. 186B, pp. 53–66.

    Article  Google Scholar 

  • Funabara, D., Watabe, S., Mooers, S.U., et al., Twitchin from Molluscan Catch Muscle: Primary Structure and Relationship between Site-Specific Phosphorylation and Mechanical Function, J. Biol. Chem., 2003, vol. 278, pp. 29 308–29 316.

    Article  CAS  Google Scholar 

  • Funabara, D., Kanoh, S., Siegman, M., et al., Twitchin as a Regulator of Catch Contraction in Molluscan Smooth Muscle, J. Muscle Res. Cell Motil., 2005, vol. 26, pp. 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Fürst, D.O., Osborn, M., and Weber, K., Myogenesis in the Mouse Embryo: Differential Onset of Expression of Myogenic Protein and the Involvement of Titin in Myofibril Assembly, J. Cell Biol., 1989, vol. 109, pp. 517–527.

    Article  PubMed  Google Scholar 

  • Haszprunar, G. and Wanninger, A., Molluscan Muscle Systems in Development and Evolution, J. Zool. Syst. Evol. Res., 2000, vol. 38, pp. 157–163.

    Article  Google Scholar 

  • Hill, C. and Weber, K., Monoclonal Antibodies Distinguish Titins from Heart and Skeletal Muscle, J. Cell Biol., 1986, vol. 102, pp. 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  • Karpenko, A.A., Method and Device fir Registration of TV-signal of Biological Objects, RF Patent No. 838893, Byull. Izobret., 1993, no. 32, p. 46.

  • Karpenko, A.A. and Odintsova, N.A., Effect of Inducers of Lipid Peroxidation on the Behavior of Ciliated Epithelial Cells, Comp. Biochem. Physiol., 1996, vol. 113, pp. 841–844.

    Article  CAS  Google Scholar 

  • Linke, W.A., Stretching Molecular Springs: Elasticity of Titin Filaments in Vertebrate Striated Muscle, Histol. Histopathol., 2000, vol. 15, pp. 799–811.

    PubMed  CAS  Google Scholar 

  • Malakhov, V.V. and Medvedeva, L.A., Embryonic and Early Larval Development of Mytilus edulis (Bivalvia), Zool. Zh., 1985, vol. 64, pp. 1808–1815.

    Google Scholar 

  • Odintsova, N., Dyachuk, V., Kiselev, K., and Shelud’ko, N., Expression of Thick Filament Proteins during Ontogenesis of the Mussel Mytilus trossulus (Mollusca: Bivalvia), Comp. Biochem. Biophys. B, 2006, vol. 144, pp. 238–244.

    Article  CAS  Google Scholar 

  • Page, L.R., Sequential Developmental Programmes for Retractor Muscles of a Caenogastropod: Reappraisal of Evolutionary Homologues, Proc. R. Soc, L, 1998, vol. 265B, pp. 2243–2250.

    Article  Google Scholar 

  • Ruegg, J.C., Smooth Muscle Tone, Physiol. Rev., 1971, vol. 51, pp. 201–248.

    PubMed  CAS  Google Scholar 

  • Shelud’ko, N.S., Tuturova, K.Ph., Permyakova, T.V., et al., A Novel Thick Filament Protein in Smooth Muscles of Bivalvia Molluscs, Comp. Biochem. Physiol., 1999, vol. 122, pp. 277–285.

    Google Scholar 

  • Shelud’ko, N.S., Matusovskaya, G.G., Permyakova, T.V., and Matusovsky, O.S., Twitchin, a Thick-Filament Protein from Molluscan Catch Muscle, Interacts with F-Actin in a Phosphorylation-Dependent Way, Arch. Biochem. Biophys., 2004a, vol. 432, pp. 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Shelud’ko, N., Permyakova, T., Matusovskaya, G., and Matusovsky, O., Twitchin from Molluscan Catch Muscle Can Interact with Actin and Thick Filament Paramyosin Core. “Twitchin Hypothesis” for the Mechanism of Catch, Abstr. Internat. Symp. “Biology of Motility: New Trends in Research,” Pushchino, 2004b, pp. 101–102.

  • Siegman, M.J., Mooers, S.U., Li, C.Q., et al., Phosphorylation of a High Molecular Weight (Similar to 600 kDa) Protein Regulates Catch in Invertebrate Smooth Muscle, J. Muscle Res. Cell Motil., 1997, vol. 18, pp. 655–670.

    Article  PubMed  CAS  Google Scholar 

  • Siegman, M.J., Funabara, D., Kinoshita, S., et al., Phosphorylation of a Twitchin-Related Protein Controls Catch and Calcium Sensitivity of Force Production in Invertebrate Smooth Muscle, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 5383–5388.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A.G., Cohen, C., and Kendrick-Jones, J., Paramyosin and Filaments of Molluscan “Catch” Muscle, J. Mol. Biol., 1971, vol. 56, pp. 239–258.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova, L. and Trinick, J., Role of Titin in Muscle Regulation, Biophys. J., 2002, vol. 82, p. 400.

    Google Scholar 

  • Vanderloop, F.T.L., Vanderven, P.F.M., Fürst, D.O., et al., Integration of Titin Into the Sarcomeres of Cultured Differentiating Human Skeletal Muscle Cells, Eur. J. Cell Biol., 1996, vol. 69, pp. 301–307.

    CAS  Google Scholar 

  • van der Ven, P.F.M., Bartsch, J.W., Gautel, M., et al., A Functional Knock-Out of Titin Results in Defective Myofibril Assembly, J. Cell Sci., 2000, vol. 113, pp. 1405–1414.

    PubMed  Google Scholar 

  • Vibert, P., Edelstein, S.M., Castellani, L., and Elliott, B.W., Mini-Titins in Striated and Smooth Molluscan Muscles: Structure, Location and Immunological Crossreactivity, J. Muscle Res. Cell Motil., 1993, vol. 14, pp. 598–607.

    Article  PubMed  CAS  Google Scholar 

  • Wanninger, A. and Haszprunar, G., Chiton Myogenesis: Perspectives for the Development and Evolution of Larval and Adult Muscle Systems in Molluscs, J. Morphol., 2002a, vol. 251, pp. 103–112.

    Article  PubMed  Google Scholar 

  • Wanninger, A. and Haszprunar, G., Muscle Development in Antalis entails (Mollusca, Scaphopoda) and Its Significance for Scaphopod Relationships, J. Morphol., 2002b, vol. 254, pp. 53–64.

    Article  PubMed  Google Scholar 

  • Wanninger, A., Ruthensteiner, B., Lobenwein, S., et al., Development of the Musculature in the Limpet Patella (Mollusca, Patellogastropoda), Devel. Genes Evol., 1999, vol. 209, pp. 226–238.

    Article  CAS  Google Scholar 

  • Yamada, A., Yoshio, M., Oiwa, K., and Nyitray, L., Catchin, a Novel Protein in Molluscan Catch Muscles, Is Produced by Alternative Splicing from the Myosin Heavy Chain Gene, J. Mol. Biol., 2000, vol. 295, pp. 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, A., Yoshio, M., Kojima, H., and Oiwa, K., An in Vitro Assay Reveals Essential Protein Components for the “Catch” State of Invertebrate Smooth Muscle, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 6635–6640.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Featherstone, D., Davis, W., et al., Drosophila D-Titin Is Required for Myoblast Fusion and Skeletal Muscle Striation, J. Cell Sci., 2000, vol. 113, pp. 3103–3115.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Odintsova, V.A. Dyachuk, A.A. Karpenko, 2007, published in Ontogenez, 2007, Vol. 38, No. 3, pp. 235–240.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odintsova, N.A., Dyachuk, V.A. & Karpenko, A.A. Development of the muscle system and contractile activity in the mussel Mytilus trossulus (Mollusca, Bivalvia). Russ J Dev Biol 38, 190–196 (2007). https://doi.org/10.1134/S1062360407030071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360407030071

Key words

Navigation