Skip to main content
Log in

Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos

  • Morphogenesis in Development
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The role of cooperative cell movements has been explored in establishment of regular segregation of the marginal zone of Xenopus laevis embryos into the main axial rudiments: notochord, somites and neural tissue. For this purpose, the following operations were performed at the late blastula-early gastrula stages: (1) isolation of marginal zones, (2) addition of the ventral zone fragments to the marginal zones, (3) dissection of isolated marginal zones along either ventral (a) or dorsal (b) midlines, (4) immediate retransplantation of excised fragments of the suprablastoporal area to the same places without rotation or after 90° rotation, (5) Π-shaped separation of the suprablastoporal area either anteriorly or posteriorly. In experiments 1, 4, and 5, lateromedial convergent cell movements and differentiation of the axial rudiments were suppressed. In experiments 4 and 5, cell movements were reoriented ventrally, the entire embryo architecture was extensively reconstructed, and the axial rudiments were relocated to the blastopore lateral lips. In experiment 3, convergent cell movements were restored and oriented either towards the presumptive embryo midline (a), or in the perpendicular direction (b). In both cases, well developed axial rudiments elongated perpendicularly to cell convergences were formed. If the areas of axial rudiment formation were curved, mesodermal somites and neural tissue were always located on the convex (stretched) and concave (compressed) sides, respectively. We conclude that no stable prepatterning of the marginal zone takes place until at least the midgastrula stage. This prepatterning requires cooperative cell movements and associated mechano-geometric constrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arizumi, T. and Asashima, M., In vitro Induction Systems for Analyses of Amphibian Organogenesis and Body Patterning, Int. J. Devel. Biol., 2001, vol. 45, pp. 273–279.

    Google Scholar 

  • Beloussov, L.V., Lakirev, A.V., and Naumidi, I.I., The Role of External Tensions in Differentiation of Xenopus laevis Embryonic Tissues, Cell Diff. Devel., 1988, vol. 25, pp. 165–176.

    Article  CAS  Google Scholar 

  • Beloussov, L.V., Luchinskaya, N.N., and Zaraisky, A.G., Tensotaxis is a Collective Movement of Embryonic Cells upwards Gradients of Mechanical Tensions, Ontogenez, 1999, vol. 30, no. 3, pp. 220–228.

    Google Scholar 

  • Beloussov, L.V., Luchinskaia, N.N., and Stein, A.A., Tension-Dependent Collective Cell Movements in the Early Gastrula Ectoderm of Xenopus laevis Embryos, Devel. Genes Evol., 2000, vol. 210, pp. 92–104.

    Article  CAS  Google Scholar 

  • Beloussov, L.V., Luchinskaia, N.N., Ermakov, A.S., and Glagoleva, N.S., Gastrulation in Amphibian Embryos, Regarded as a Succession of Biomechanical Feedback Events, Int. J. Devel. Biol., 2006, vol. 50, pp. 113–122.

    Article  Google Scholar 

  • Bouwmeester, T., Kim, S., Sasai, Y., et al., Cerberus Is a Head-Inducing Secreted Factor Expressed in the Anterior Endoderm of Spemann’s Organizer, Nature, 1996, vol. 382, no. 6592, pp. 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Brouzes, E. and Farge, E., Interplay of Mechanical Deformations and Patterned Gene Expression in Developing Embryos, Curr. Opin. Genet. Devel., 2004, vol. 14, pp. 367–374.

    Article  CAS  Google Scholar 

  • Cherdantsev, V.G., Morfogenez i evolyutsiya (Morphogenesis and Evolution), Moscow: KMK, 2003.

    Google Scholar 

  • Cho, K.W., Blumberg, B., Steinbeisser, H., and De Robertis, E.M., Molecular Nature of Spemann’s Organizer: The Role of the Xenopus Homeobox Gene goosecoid, Cell, 1991, vol. 67, no. 6, pp. 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Christian, J.L. and Moon, R.T., Interaction between Xwnt-8 and Spemann Organizer Signaling Pathways Generate Dorsoventral Pattern in the Embryonic Mesoderm of Xenopus, Genes Devel., 1993, vol. 7, pp. 13–28.

    Article  PubMed  CAS  Google Scholar 

  • Dale, L. and Slack, J.M.W., Fate Map for the 32-Cell Stage of Xenopus laevis, Development, 1987, vol. 99, pp. 527–551.

    PubMed  CAS  Google Scholar 

  • Gilbert, S.F., Developmental biology. Sunderland: Sinauer Ass., Inc., 2003.

    Google Scholar 

  • Green, J.B.A., Smith, J.C., and Gerhart, J.C., Slow Emergence of a Multithreshold Response to Activin Requires Cell-Contact-Dependent Sharpening but Not Prepattern, Development, 1994, vol. 120, pp. 2271–2278.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B., Harger, P., Mitchell, A., and Lemaire, P., Activin Signaling and Response to a Morphogen Gradient, Nature, 1994, vol. 311, pp. 487–492.

    Article  Google Scholar 

  • Heasman, J., Patterning the Xenopus Blastula, Development, 1997, vol. 124, pp. 4179–4191.

    PubMed  CAS  Google Scholar 

  • Kraus, Y.A., Morphomechanical Programming of Morphogenesis in Cnidarian Embryos, Int. J. Devel. Biol., 2006, vol. 50, pp. 267–275.

    Article  Google Scholar 

  • Kumano, G. and Smith, W.C., Revisions to the Xenopus Gastrula Fate Map: Implications for Mesoderm Induction and Patterning, Devel. Dyn., 2002, vol. 225, pp. 409–421.

    Article  Google Scholar 

  • Lemaire, P., Garrett, N., and Gurdon, J.B., Expression Cloning of Siamois, a Xenopus Homeobox Gene Expressed in Dorsal-Vegetal Cells of Blastulae and Able to Induce a Complete Secondary Axis, Cell, 1995, vol. 81, no. 1, pp. 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Lopashov, G.V., Die Entwicklungleistungen des Gastrulaektoderms in Abhängigkeit von Veranderungen der Masse, Biol. Zbl., 1935, vol. 55, pp. 606–615.

    Google Scholar 

  • Niehrs, C., Keller, R., Ken, W., et al., The Homeobox Gene goosecoid Controls Cell Migration in Xenopus Embryos, Cell, 1993, vol. 72, pp. 491–503.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. and Faber, J., Normal Table of Xenopus laevis (Daudin), Amsterdam: North-Holland, 1956.

    Google Scholar 

  • Onichtchouk, D., Gawantka, V., Dosch, R., et al., The Xvent-2 Homeobox Gene Is Part of the BMP-4 Signalling Pathway Controlling Dorosventral Patterning of Xenopus Mesoderm, Development, 1996, vol. 122, no. 10, pp. 3045–3053.

    PubMed  CAS  Google Scholar 

  • Romanovskii, Yu.M., Stepanova, N.V., and Chernavskii, D.S., Matematicheskaya biofizika (Mathematical Biophysics), Moscow: Nauka, 1984.

    Google Scholar 

  • Saxön, L. and Toivonen, S., Pervichnaya embrional’naya induktsiya (Primary Embryonic Induction), Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  • Schroeder, K.E., Condic, M.L., Eisenberg, L.M., and Yost, H.J., Spatially Regulated Translation in Embryos: Asymmetric Expression of Maternal Wnt-11 along the Dorsal-Ventral Axis in Xenopus, Devel. Biol., 1999, vol. 214, no. 2, pp. 288–297.

    Article  CAS  Google Scholar 

  • Shih, J. and Keller, R., Patterns of Cell Motility in the Organizer and Dorsal Mesoderm of Xenopus laevis, Development, 1992, vol. 116, pp. 915–930.

    PubMed  CAS  Google Scholar 

  • Smith, J.C., Price, B.M., Green, J.B., et al., Expression of a Xenopus Homolog of Brachyury (T) Is an Immediate-Early Response to Mesoderm Induction, Cell, 1991, vol. 67, no. 1, pp. 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W.C., McKendry, R., Ribisi, S.J., and Harland, R.M., A Nodal-Related Gene Defines a Physical and Functional Domain within the Spemann Organizer, Cell, 1995, vol. 82, no. 1, pp. 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, S.I., The Pregastrula Establishment of Gene Expression Pattern in Xenopus Embryos: Requirements for Local Cell Interactions and for Protein Synthesis, Devel. Biol., 1994, vol. 166, pp. 782–788.

    Article  CAS  Google Scholar 

  • Yamada, T., Caudalization by the Amphibian Organizer: brachyuri, Convergent Extension and Retinoic Acid, Development, 1994, vol. 120, pp. 3051–3062.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.V. Beloussov, E.G. Korvin-Pavlovskaya, N.N. Luchinskaya, E.S. Kornikova, 2007, published in Ontogenez, 2007, Vol. 38, No. 3, pp. 192–204.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beloussov, L.V., Korvin-Pavlovskaya, E.G., Luchinskaya, N.N. et al. Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos. Russ J Dev Biol 38, 152–163 (2007). https://doi.org/10.1134/S1062360407030034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360407030034

Key words

Navigation