Skip to main content
Log in

The notochord: structure and functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kowalevsky A (1866) Entwicklungsgeschichte der einfachen Ascidien. Mem l’Acad St Petersbourg Ser 7:11–19

    Google Scholar 

  2. Kowalevsky A (1866) Entwicklungsgeschichte des Amphioxus lanceolatus. Mem l’Acad St Petersbourg Ser 7:1–17

    Google Scholar 

  3. Satoh N, Tagawa K, Takahashi H (2012) How was the notochord born? Evol Dev 14:56–75. doi:10.1111/j.1525-142X.2011.00522.x

    CAS  PubMed  Google Scholar 

  4. Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Biol Sci 281:20141729. doi:10.1098/rspb.2014.1729

    PubMed Central  PubMed  Google Scholar 

  5. Hejnol A, Lowe CJ (2014) Animal evolution: Stiff or squishy notochord origins? Curr Biol 24:R1131–R1133. doi:10.1016/j.cub.2014.10.059

    CAS  PubMed  Google Scholar 

  6. Lauri A, Brunet T, Handberg-Thorsager M, Fischer A, Simakov O, Steinmetz P, Tomer R, Keller PJ, Arendt D (2014) Development of the annelid axochord: Insight into notochord evolution. Science 345:1365–1368. doi:10.1126/science.1253396

    CAS  PubMed  Google Scholar 

  7. Harlan R, Gerhart J (1997) Formation and function of Spemann’s organizer. Anuu Rev Cell Dev Biol 13:611–667

    Google Scholar 

  8. Spemann H, Mangold H (1924) Induction of embryonic primordia by implantation of organizers from a different species. Roux’s Arch Entw Mech 100:599–638

    Google Scholar 

  9. Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122:1313–1322

    CAS  PubMed  Google Scholar 

  10. Saúde L, Woolley K, Martin P, Driever W, Stemple DL (2000) Axis-inducing activities and cell fates of the zebrafish organizer. Development 127:3407–3417

    PubMed  Google Scholar 

  11. Yan YL, Hatta K, Riggleman B, Postlethwait JH (1995) Expression of a type II collagen gene in the zebrafish embryonic axis. Dev Dyn 203:363–376

    CAS  PubMed  Google Scholar 

  12. Yamamoto M, Morita R, Mizoguchi T, Matsuo H, Isoda M, Ishitani T, Chitnis AB, Matsumoto K, Crump JG, Hozumi K, Yonemura S, Kawakami K, Itoh M (2010) Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development 137:2527–2537. doi:10.1242/dev.051011

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Leeson TS, Leeson CR (1958) Observations on the histochemistry and fine structure of the notochord in rabbit embryos. J Anat 92:278–285

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bancroft M, Bellairs R (1976) The development of the notochord in the chick embryo, studied by scanning and transmission electron microscopy. J Embryol Exp Morphol 35:383–401

    CAS  PubMed  Google Scholar 

  15. Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–130

    CAS  PubMed  Google Scholar 

  16. Ellis K, Bagwell J, Bagnat M (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol 200:667–679

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Inoue S (1989) Ultrastructure of basement membranes. Int Rev Cytol 117:57–98

    CAS  PubMed  Google Scholar 

  18. Damjanov I (1990) Heterogeneity of basement membranes in normal and pathologically altered tissues. Virchowa Arch A Pathol Anat Histopathol 416:185–188

    CAS  Google Scholar 

  19. Erickson AC, Couchman J (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48:1291–1306

    CAS  PubMed  Google Scholar 

  20. Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. BioEssays 18(2):123–132

    CAS  PubMed  Google Scholar 

  21. Camón J, Degollada E, Verdú J (1990) Ultrastructural aspects of the production of extracellular matrix components by the chick embryonic notochord in vitro. Acta Anat (Basel) 137:114–123

    Google Scholar 

  22. Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EM, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    CAS  PubMed  Google Scholar 

  23. Scott A, Stemple DL (2005) Zebrafish notochordal basement membrane: signaling and structure. Curr Top Dev Biol 65:229–253

    CAS  PubMed  Google Scholar 

  24. Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512

    CAS  PubMed  Google Scholar 

  25. Pagnon-Minot A, Malbouyres M, Haftek-Terrau Z, Kim HR, Sasaki T, Thisse C, Thisse B, Ingham PW, Ruggiero F, Le Guellec D (2008) Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Developmental Biology 316:21–35

    CAS  PubMed  Google Scholar 

  26. Mangos S, Lam P, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3:354–365. doi:10.1242/dmm.003194

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Corallo D, Schiavinato A, Trapani V, Moro E, Argenton F, Bonaldo P (2013) Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals. Development 140:4594–4601. doi:10.1242/dev.094078

    CAS  PubMed  Google Scholar 

  28. Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V (2014) An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis. Development 141:4569–4579. doi:10.1242/dev.116103

    CAS  PubMed  Google Scholar 

  29. Theiler K (1988) Vertebral malformations. Adv Anat Embryol Cell Biol 112:1–99

    CAS  PubMed  Google Scholar 

  30. von Dassow G, Schmidt JE, Kimelman D (1993) Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev 7:355–366

    Google Scholar 

  31. Talbot WS, Trevarrow B, Halpern ME, Melby AE, Farr G, Postlethwait JH, Jowett T, Kimmel CB, Kimelman D (1995) A homeobox gene essential for zebrafish notochord development. Nature 378:150–157

    CAS  PubMed  Google Scholar 

  32. Knezevic V, Ranson M, Mackem S (1995) The organizer-associated chick homeobox gene, Gnot1, is expressed before gastrulation and regulated synergistically by activin and retinoic acid. Dev Biol 171:458–470

    CAS  PubMed  Google Scholar 

  33. Halpern ME, Thisse C, Ho RK, Thisse B, Riggleman B, Trevarrow B, Weinberg ES, Postlethwait JH, Kimmel CB (1995) Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants. Development 121:4257–4264

    CAS  PubMed  Google Scholar 

  34. Kimmel CB, Kane DA, Walker C, Warga RM, Rothman MB (1989) A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337:358–362

    CAS  PubMed  Google Scholar 

  35. Ho RK, Kane DA (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348:728–730

    CAS  PubMed  Google Scholar 

  36. Gont LK, Fainsod A, Kim SH, De Robertis EM (1996) Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus. Dev Biol 174:174–178

    CAS  PubMed  Google Scholar 

  37. Yasuo H, Lemaire P (2001) Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae. Development 128:3783–3793

    CAS  PubMed  Google Scholar 

  38. Abdelkhalek HA, Beckers A, Schuster-Gossler K, Pavlova MN, Burkhardt H, Lickert H, Rossant J, Reinhardt R, Schalkwyk LC, Müller I, Herrmann BG, Ceolin M, Rivera-Pomar R, Gossler A (2004) The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes Dev 18:1725–1736

    PubMed Central  PubMed  Google Scholar 

  39. Yamanaka Y, Mizuno T, Sasai Y, Kishi M, Takeda H, Kim CH, Hibi M, Hirano T (1998) A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev 12:2345–2353

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Fekany K, Yamanaka Y, Leung T, Sirotkin HI, Topczewski J, Gates MA, Hibi M, Renucci A, Stemple D, Radbill A, Schier AF, Driever W, Hirano T, Talbot WS, Solnica-Krezel L (1999) The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126:1427–1438

    CAS  PubMed  Google Scholar 

  41. Odenthal J, Haffter P, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Warga RM, Allende ML, Weinberg ES, Nüsslein-Volhard C (1996) Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development 123:103–115

    CAS  PubMed  Google Scholar 

  42. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  43. Chiu CH, Chou CW, Takada S, Liu YW (2012) Development and fibronectin signaling requirements of the zebrafish interrenal vessel. PLoS ONE 7:e43040. doi:10.1371/journal.pone.0043040

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Davidson LA, Hoffstrom BG, Keller R, DeSimone DW (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin α5β1, fibronectin, and tissue geometry. Dev Biol 242:109–129

    CAS  PubMed  Google Scholar 

  45. Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin α5β1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844

    CAS  PubMed  Google Scholar 

  46. George EL, Baldwin HS, Hynes RO (1997) Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90:3073–3081

    CAS  PubMed  Google Scholar 

  47. Georges-Labouesse EN, George EL, Rayburn H, Hynes RO (1996) Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207:145–156

    CAS  PubMed  Google Scholar 

  48. Marsden M, DeSimone DW (2001) Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128:3635–3647

    CAS  PubMed  Google Scholar 

  49. Trinh LA, Stainier DY (2004) Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell 6:371–382

    CAS  PubMed  Google Scholar 

  50. Halpern ME, Ho RK, Walker C, Kimmel CB (1993) Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75:99–111

    CAS  PubMed  Google Scholar 

  51. Schulte-Merker S, van Eeden FJ, Halpern ME, Kimmel CB, Nüsslein-Volhard C (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120:1009–1015

    CAS  PubMed  Google Scholar 

  52. Kispert A, Herrmann BG (1994) Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev Biol 161:179–193

    PubMed  Google Scholar 

  53. Kispert A, Ortner H, Cooke J, Herrmann BG (1995) The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev Biol 168:406–415

    CAS  PubMed  Google Scholar 

  54. Kispert A, Hermann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12:4898–4899

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Conlon FL, Sedgwick SG, Weston KM, Smith JC (1996) Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122:2427–2435

    CAS  PubMed  Google Scholar 

  56. Wilkinson DG, Bhatt S, Hermann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343:657–659

    CAS  PubMed  Google Scholar 

  57. Smith JC, Price BM, Green JB, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67:79–87

    CAS  PubMed  Google Scholar 

  58. Schulte-Merker S, Ho RK, Herrmann BG, Nüsslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021–1032

    CAS  PubMed  Google Scholar 

  59. Wilson V, Manson L, Skarnes WC, Beddington RS (1995) The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121:877–886

    CAS  PubMed  Google Scholar 

  60. Melby AE, Kimelman D, Kimmel CB (1997) Spatial regulation of floating head expression in the developing notochord. Dev Dyn 209:156–165

    CAS  PubMed  Google Scholar 

  61. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    CAS  PubMed  Google Scholar 

  62. Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Pollard SM, Parsons MJ, Kamei M, Kettleborough RNW, Thomas KA, Van Pham N, Bae M, Scott A, Weinstein BM, Stemple DL (2006) Essential and overlapping roles for laminin α chains in notochord and blood vessel formation. Dev Biol 289:64–76

    CAS  PubMed  Google Scholar 

  64. Fratzl P (2008) Collagen: structure and mechanics. Springer, New York (ISBN 0-387-73905-X)

    Google Scholar 

  65. Gansner JM, Gitlin JD (2011) Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev Dyn 237:3715–3726. doi:10.1002/dvdy.21779

    Google Scholar 

  66. Christiansen HE, Lang MR, Pace JM, Parichy DM (2009) Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth. PLoS ONE 4:e8481

    PubMed Central  PubMed  Google Scholar 

  67. Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD (2007) Essential role of lysyl oxidases in notochord development. Dev Biol 307:202–213

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Mendelsohn BA, Yin C, Johnson SL, Wilm TP, Solnica-Krezel L, Gitlin JD (2006) Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab 4:155–162

    CAS  PubMed  Google Scholar 

  69. Menkes JH (1988) Kinky hair disease: twenty five years later. Brain Dev 10:77–79

    CAS  PubMed  Google Scholar 

  70. Madsen EC, Gitlin JD (2008) Zebrafish mutants calamity and catastrophe define critical pathways of gene-nutrient interactions in developmental copper metabolism. PLoS Genet 4:e1000261. doi:10.1371/journal.pgen.1000261

    PubMed Central  PubMed  Google Scholar 

  71. Gansner JM, Madsen EC, Mecham RP, Gitlin JD (2008) Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 237:2844–2861. doi:10.1002/dvdy.21705

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182

    CAS  PubMed  Google Scholar 

  73. Coutinho P, Parsons MJ, Thomas KA, Hirst EM, Saúde L, Campos I, Williams PH, Stemple DL (2004) Differential requirements for COPI transport during vertebrate early development. Dev Cell 7:547–558

    CAS  PubMed  Google Scholar 

  74. Nickel W, Brügger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115:3235–3240

    CAS  PubMed  Google Scholar 

  75. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nüsslein-Volhard C (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123:369–389

    CAS  PubMed  Google Scholar 

  76. Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93

    CAS  PubMed  Google Scholar 

  77. Pickart MA, Klee EW, Nielsen AL, Sivasubbu S, Mendenhall EM, Bill BR, Chen E, Eckfeldt CE, Knowlton M, Robu ME et al (2006) Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome. PLoS ONE 1:e104

    PubMed Central  PubMed  Google Scholar 

  78. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    PubMed Central  PubMed  Google Scholar 

  79. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32:97–108. doi:10.1016/j.devcel.2014.11.018

    CAS  PubMed  Google Scholar 

  80. Cleaver O, Krieg PA (2001) Notochord patterning of the endoderm. Dev Biol 234:1–12

    CAS  PubMed  Google Scholar 

  81. Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Semin Cell Dev Biol 10:353–362

    CAS  PubMed  Google Scholar 

  82. Placzek M, Yamada T, Tessier-Lavigne M, Jessell T, Dodd J (1991) Control of dorsoventral pattern in vertebrate neural development: induction and polarizing properties of the floor plate. Development Suppl 2:105–122

    Google Scholar 

  83. Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM (1990) Control of cell pattern in the developing nervous system: Polarizing activity of the floor plate and notochord. Cell 64:635–647

    Google Scholar 

  84. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    CAS  PubMed  Google Scholar 

  85. Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747–756

    CAS  PubMed  Google Scholar 

  86. Martí E, Takada R, Bumcrot DA, Sasaki H, McMahon AP (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121:2537–2547

    PubMed  Google Scholar 

  87. Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81:445–455

    CAS  PubMed  Google Scholar 

  88. Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell TM (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol 62:451–466

    CAS  PubMed  Google Scholar 

  89. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1992) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Google Scholar 

  90. Placzek M, Jessell TM, Dodd J (1992) Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development 117:205–218

    Google Scholar 

  91. Yamada T, Pfaff SL, Edlund T, Jessell TM (1992) Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73:673–686

    Google Scholar 

  92. Chamberlain CE, Jeong J, Guo C, Allen BL, McMahon AP (2008) Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135:1097–1106

    CAS  PubMed  Google Scholar 

  93. Odenthal J, van Eeden FJM, Haffter P, Ingham PW, Nusslein-Volhard C (2000) Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol 219:350–363

    CAS  PubMed  Google Scholar 

  94. Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, Haffter P (1998) Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125:2983–2993

    CAS  PubMed  Google Scholar 

  95. Ribes V, Balaskas N, Sasai N, Cruz C, Dessaud E, Cayuso J, Tozer S, Yang LL, Novitch B, Marti E, Briscoe J (2010) Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev 24:1186–1200. doi:10.1101/gad.559910

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Liem KF, Tremml G, Roelink H, Jessell TM (1994) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    Google Scholar 

  97. Lee KJ, Jessell TM (1998) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    Google Scholar 

  98. Tozer S, Le Dréau G, Marti E, Briscoe J (2013) Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube. Development 140:1467–1474. doi:10.1242/dev.090118

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Patten I, Placzek M (2002) Opponent activities of Shh and BMP signaling during floor plate induction in vivo. Curr Biol 12:47–52

    CAS  PubMed  Google Scholar 

  100. Martinez-Morales JR, Barbas JA, Martí E, Bovolenta P, Edgar D, Rodriguez-Tébar A (1997) Vitronectin is expressed in the ventral region of the neural tube and promotes the differentiation of motor neurons. Development 124:5139–5147

    CAS  PubMed  Google Scholar 

  101. Pons S, Trejo JL, Martinez-Morales JR, Martí E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128:1481–1492

    CAS  PubMed  Google Scholar 

  102. Gleiberman AS, Fedtsova NG, Rosenfeld MG (1998) Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol 213:340–353

    Google Scholar 

  103. Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958. doi:10.1002/dvdy.21805

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Choi KS, Harfe BD (2011) Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci USA 108:9484–9489. doi:10.1073/pnas.1007566108

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Choi KS, Lee C, Harfe BD (2012) Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs. Mech Dev 129:255–262. doi:10.1016/j.mod.2012.07.003

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396

    CAS  Google Scholar 

  107. Fan CM, Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79:1175–1186

    CAS  PubMed  Google Scholar 

  108. Johnson RL, Laufer E, Riddle RD, Tabin C (1994) Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79:1165–1173

    PubMed  Google Scholar 

  109. Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M (1995) Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81:457–465

    CAS  PubMed  Google Scholar 

  110. Teillet M, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Le Douarin NM (1998) Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125:2019–2030

    CAS  PubMed  Google Scholar 

  111. Buttitta L, Mo R, Hui CC, Fan CM (2003) Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130:6233–6243

    CAS  PubMed  Google Scholar 

  112. Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:781–792

    CAS  PubMed  Google Scholar 

  113. Borycki AG, Mendham L, Emerson CP (1998) Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 125:777–790

    CAS  PubMed  Google Scholar 

  114. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dockter JL (2000) Sclerotome induction and differentiation. Curr Top Dev Biol 48:77–127

    CAS  PubMed  Google Scholar 

  116. Ando T, Semba K, Suda H, Sei A, Mizuta H, Araki M, Abe K, Imai K, Nakagata N, Araki K, Yamamura K (2011) The floor plate is sufficient for development of the sclerotome and spine without the notochord. Mech Dev 128:129–140. doi:10.1016/j.mod.2010.11.005

    CAS  PubMed  Google Scholar 

  117. El-Magd MA, Allen S, McGonnell I, Mansour AA, Otto A, Patel K (2014) Shh regulates chick Ebf1 gene expression in somite development. Gene 554:87–95. doi:10.1016/j.gene.2014.10.028

    PubMed  Google Scholar 

  118. Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP (1999) Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126:4053–4063

    CAS  PubMed  Google Scholar 

  119. Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, Emerson CP (2002) Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 16:114–126

    CAS  PubMed Central  PubMed  Google Scholar 

  120. McDermott A, Gustafsson M, Elsam T, Hui CC, Emerson CP Jr, Borycki AG (2005) Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132:345–357

    CAS  PubMed  Google Scholar 

  121. Münsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9:2911–2922

    PubMed  Google Scholar 

  122. Feng X, Adiarte EG, Devoto SH (2006) Hedgehog acts directly on the zebrafish dermomyotome to promote myogenic differentiation. Dev Biol 300:736–746

    CAS  PubMed  Google Scholar 

  123. Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, Hughes SM (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 302:504–521

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L (2008) A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 323:152–165. doi:10.1016/j.ydbio.2008.08.024

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Kahane N, Ribes V, Kicheva A, Briscoe J, Kalcheim C (2013) The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development 140:1740–1750. doi:10.1242/dev.092726

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wolff C, Roy S, Ingham PW (2003) Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 13:1169–1181

    CAS  PubMed  Google Scholar 

  127. Ingham PW, Kim HR (2005) Hedgehog signalling and the specification of muscle cell identity in the zebrafish embryo. Exp Cell Res 306:336–342

    CAS  PubMed  Google Scholar 

  128. Hatta K, Bremiller R, Westerfield M, Kimmel CB (1991) Diversity of expression of engrailed-like antigens in zebrafish. Development 112:821–832

    CAS  PubMed  Google Scholar 

  129. Stemple DL, Solnica-Krezel L, Zwartkruis F, Neuhauss SC, Schier AF, Malicki J, Stainier DY, Abdelilah S, Rangini Z, Mountcastle-Shah E, Driever W (1996) Mutations affecting development of the notochord in zebrafish. Development 123:117–128

    CAS  PubMed  Google Scholar 

  130. Coutelle O, Blagden CS, Hampson R, Halai C, Rigby PW, Hughes SM (2001) Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev Biol 236:136–150

    CAS  PubMed  Google Scholar 

  131. Goldstein AM, Fishman MC (1998) Notochord regulates cardiac lineage in zebrafish embryos. Dev Biol 201:247–252

    CAS  PubMed  Google Scholar 

  132. Danos MC, Yost HJ (1996) Role of notochord in specification of cardiac left–right orientation in zebrafish and Xenopus. Dev Biol 177:96–103

    CAS  PubMed  Google Scholar 

  133. Lohr JL, Danos MC, Yost HJ (1997) Left–right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124:1465–1472

    CAS  PubMed  Google Scholar 

  134. Melloy PG, Ewart JL, Cohen MF, Desmond ME, Kuehn MR, Lo CW (1998) No turning, a mouse mutation causing left–right and axial patterning defects. Dev Biol 193:77–89

    CAS  PubMed  Google Scholar 

  135. Wong KS, Rehn K, Palencia-Desai S, Kohli V, Hunter W, Uhl JD, Rost MS, Sumanas S (2012) Hedgehog signaling is required for differentiation of endocardial progenitors in zebrafish. Dev Biol 361:377–391. doi:10.1016/j.ydbio.2011.11.004

    CAS  PubMed  Google Scholar 

  136. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Res Dis 140:1097–1103

    CAS  Google Scholar 

  137. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    CAS  PubMed  Google Scholar 

  138. Sumoy L, Keasey JB, Dittman TD, Kimelman D (1997) A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev 63:15–27

    CAS  PubMed  Google Scholar 

  139. Fouquet B, Weinstein BM, Serluca FC, Fishman MC (1997) Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 183:37–48

    CAS  PubMed  Google Scholar 

  140. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    CAS  PubMed  Google Scholar 

  141. Reese DE, Hall CE, Mikawa T (2004) Negative regulation of midline vascular development by the notochord. Dev Cell 6:699–708

    CAS  PubMed  Google Scholar 

  142. Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, Kuehn MR, Capecchi MR, Chen F (2010) Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol 340:518–527. doi:10.1016/j.ydbio.2010.02.007

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Murashima A, Akita H, Okazawa M, Kishigami S, Nakagata N, Nishinakamura R, Yamada G (2014) Midline-derived Shh regulates mesonephric tubule formation through the paraxial mesoderm. Dev Biol 386:216–226. doi:10.1016/j.ydbio.2013.12.026

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Kim SK, Hebrok M, Melton DA (1997) Notochord to endoderm signaling is required for pancreas development. Development 124:4243–4252

    CAS  PubMed  Google Scholar 

  145. Hebrok M, Kim SK, Melton DA (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 12:1705–1713

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Cleaver O, Seufert DW, Krieg PA (2000) Endoderm patterning by the notochord: development of the hypochord in Xenopus. Development 127:869–879

    CAS  PubMed  Google Scholar 

  147. Fausett SR, Brunet LJ, Klingensmith J (2014) BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis. Dev Biol 391:111–124. doi:10.1016/j.ydbio.2014.02.008

    CAS  PubMed  Google Scholar 

  148. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL (2006) Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74:422–437

    CAS  PubMed  Google Scholar 

  149. Anderson C, Thorsteinsdóttir S, Borycki AG (2009) Sonic hedgehog-dependent synthesis of laminin alpha1 controls basement membrane assembly in the myotome. Development 136:3495–3504. doi:10.1242/dev.036087

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Costello I, Biondi CA, Taylor JM, Bikoff EK, Robertson EJ (2009) Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC Dev Biol 9:54. doi:10.1186/1471-213X-9-54

    PubMed Central  PubMed  Google Scholar 

  151. Concordet JP, Lewis KE, Moore JW, Goodrich LV, Johnson RL, Scott MP, Ingham PW (1996) Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122:2835–2846

    CAS  PubMed  Google Scholar 

  152. Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 138:97–106. doi:10.1242/dev.053975

    CAS  PubMed  Google Scholar 

  153. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Creanga A, Glenn TD, Mann RK, Saunders AM, Talbot WS, Beachy PA (2012) Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev 26:1312–1325. doi:10.1101/gad.191866.112

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Tukachinsky H, Kuzmickas RP, Jao CY, Liu J, Salic A (2012) Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep 2:308–320. doi:10.1016/j.celrep.2012.07.010

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Schaffer J (1910) In von Mollendorff’s “Handbuch der Mikroskopischen Anatomie des Menschen”. Springer, Berlin, pp 31–44

    Google Scholar 

  158. Rufai A, Benjamin M, Ralphs JR (1995) The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 192:53–62

    CAS  Google Scholar 

  159. Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Haga Y, Dominique VJ 3rd, Du SJ (2009) Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model. Transgenic Res 18:669–683. doi:10.1007/s11248-009-9259-y

    CAS  PubMed  Google Scholar 

  161. Lefebvre V (2002) Toward understanding the functions of the two highly related Sox5 and Sox6 genes. J Bone Miner Metab 20:121–130

    CAS  PubMed  Google Scholar 

  162. Smits P, Lefebvre V (2003) Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130:1135–1148

    CAS  PubMed  Google Scholar 

  163. Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R (1994) The role of Pax-1 in axial skeleton development. Development 120:1109–1121

    CAS  PubMed  Google Scholar 

  164. Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development 126:5399–5408

    CAS  PubMed  Google Scholar 

  165. Grotmol S, Kryvi H, Nordvik K, Totland GK (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol (Berl) 207:263–272

    Google Scholar 

  166. Dale RM, Topczewski J (2011) Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene. Dev Biol 357:518–531

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880

    CAS  PubMed  Google Scholar 

  168. Grey RS, Wilm TP, Smith J, Bagnat M, Dale RM, Topczewski J, Johnson SL, Solnica-Krezel L (2014) Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations. Dev Biol 386:72–85. doi:10.1016/j.ydbio.2013.11.028

    Google Scholar 

  169. Butler WF (1989) Comparative anatomy and development of the mammalian disc. In: Gosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 84–108

    Google Scholar 

  170. Rodrigues-Pinto R, Richardson SM, Hoyland JA (2014) An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J 23:1803–1814. doi:10.1007/s00586-014-3305-z

    PubMed  Google Scholar 

  171. Frick SL, Hanley EN, Meyer RA, JrRamp WK, JrChapman TM (1994) Lumbar intervertebral disc transfer. A canine study. Spine 19:1826–1834

    CAS  PubMed  Google Scholar 

  172. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506

    CAS  PubMed  Google Scholar 

  173. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    CAS  PubMed  Google Scholar 

  174. Hutton WC, Ganey TM, Elmer WA, Kozlowska E, Ugbo JL, Doh ES, Whitesides TE Jr (2000) Does long-term compressive loading on the intervertebral disc cause degeneration? Spine 25:2993–3004

    CAS  PubMed  Google Scholar 

  175. Kadoya K, Kotani Y, Abumi K, Takada T, Shimamoto N, Shikinami Y, Kadosawa T, Kaneda K (2001) Biomechanical and morphologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc: in vitro and in vivo analysis. Spine 26:1562–1569

    CAS  PubMed  Google Scholar 

  176. Kawchuk GN, Kaigle AM, Holm SH, Rod FO, Ekstrom L, Hansson T (2001) The diagnostic performance of vertebral displacement measurements derived from ultrasonic indentation in an in vivo model of degenerative disc disease. Spine 26:1348–1355

    CAS  PubMed  Google Scholar 

  177. Vujovic S, Henderson S, Presneau N, Odell E, Jacques TS, Tirabosco R, Boshoff C, Flanagan AM (2006) Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209:157–165

    CAS  PubMed  Google Scholar 

  178. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ (2012) Chordoma: current concepts, management, and future directions. Lancet Oncol 13:e69–e76. doi:10.1016/S1470-2045(11)70337-0

    PubMed  Google Scholar 

  179. Persson S, Kindblom LG, Angervall L (1991) Classical and chondroid chordoma: a light-microscopic, histochemical, ultrastructural and immunohistochemical analysis of the various cell types. Pathol Res Pract 187:828–838

    CAS  PubMed  Google Scholar 

  180. Yamaguchi T, Suzuki S, Ishiiwa H, Ueda Y (2004) Intraosseous benign notochordal cell tumours: overlooked precursors of classical chordomas? Histopathology 44:597–602

    CAS  PubMed  Google Scholar 

  181. Takahiko N, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M (1997) Cytokeratin subtyping in chordomas and the fetal notochord: an immunohistochemical analysis of aberrant expression. Mod Pathol 10:545–551

    Google Scholar 

  182. Salisbury JR (1993) The pathology of the notochord: review article. J Pathol 171:153–155

    Google Scholar 

  183. Mirra JM, Nelson SD, Della Rocca C, Mertens F (2002) Notochordal tumours. In: Fletcher KK, Mertens F (eds) Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon, pp 315–317

    Google Scholar 

  184. Showell C, Binder O, Conlon FL (2004) T-box genes in embryogenesis. A review. Dev Dyn 229:202–218

    Google Scholar 

  185. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, Goldstein AM, Parry DM, Kelley MJ (2009) T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 41:1176–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Presneau N, Shalaby A, Ye H, Pillay N, Halai D, Idowu B, Tirabosco R, Whitwell D, Jacques TS, Kindblom LG et al (2011) Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol 223:327–335. doi:10.1002/path.2816

    CAS  PubMed  Google Scholar 

  187. Pillay N, Plagnol V, Tarpey PS, Lobo SB, Presneau N, Szuhai K, Halai D, Berisha F, Cannon SR, Mead S, Kasperaviciute D, Palmen J, Talmud PJ, Kindblom LG, Amary MF, Tirabosco R, Flanagan AM (2012) A common single-nucleotide variant in T is strongly associated with chordoma. Nat Genet 44:1185–1187. doi:10.1038/ng.2419

    CAS  PubMed  Google Scholar 

  188. Nelson AC, Pillay N, Henderson S, Presneau N, Tirabosco R, Halai D, Berisha F, Flicek P, Stemple DL, Stern CD, Wardle FC, Flanagan AM (2012) An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J Pathol 228(3):274–285. doi:10.1002/path.4082

    CAS  PubMed  Google Scholar 

  189. Hsu W, Mohyeldin A, Shah SR, Ap Rhys CM, Johnson LF, Sedora-Roman NI, Kosztowski TA, Awad OA et al (2011) Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 115:760–769. doi:10.3171/2011.5.JNS11185

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C (2010) The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. J Clin Invest 120:533–544. doi:10.1172/JCI38379

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Oakley GJ, Fuhrer K, Seethala RR (2008) Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol 21:1461–1469. doi:10.1038/modpathol.2008.144

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Sangoi AR, Karamchandani J, Lane B, Higgins JP, Rouse RV, Brooks JD, McKenney JK (2011) Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod Pathol 24:425–429. doi:10.1038/modpathol.2010.196

    CAS  PubMed  Google Scholar 

  193. Schwab J, Antonescu C, Boland P, Healey J, Rosenberg A, Nielsen P, Iafrate J, Delaney T, Yoon S, Choy E, Harmon D et al (2009) Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. Anticancer Res 29:1867–1871

    CAS  PubMed  Google Scholar 

  194. Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y (2014) Chordoma: the entity. Biochim Biophys Acta 1846:655–669. doi:10.1016/j.bbcan.2014.07.012

    CAS  PubMed  Google Scholar 

  195. Cates JM, Itani DM, Coffin CM, Harfe BD (2010) The sonic hedgehog pathway in chordoid tumours. Histopathology 56:978–979. doi:10.1111/j.1365-2559.2010.03572.x

    PubMed  Google Scholar 

  196. Barrionuevo F, Taketo MM, Scherer G, Kispert A (2006) Sox9 is required for notochord maintenance in mice. Dev Biol 295:128–140

    CAS  PubMed  Google Scholar 

  197. Schwab JH, Boland PJ, Agaram NP, Socci ND, Guo T, O’Toole GC, Wang X, Ostroumov E, Hunter CJ, Block JA, Doty S, Ferrone S, Healey JH, Antonescu CR (2009) Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol Immunother 58:339–349. doi:10.1007/s00262-008-0557-7

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Han S, Polizzano C, Nielsen GP, Hornicek FJ, Rosenberg AE, Ramesh V (2009) Aberrant hyperactivation of akt and Mammalian target of rapamycin complex 1 signaling in sporadic chordomas. Clin Cancer Res 15:1940–1946. doi:10.1158/1078-0432.CCR-08-2364

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM (2009) Potential therapeutic targets for chordoma: PI3 K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 100:1406–1414. doi:10.1038/sj.bjc.6605019

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Burger A, Vasilyev A, Tomar R, Selig MK, Nielsen GP, Peterson RT, Drummond IA, Haber DA (2014) A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12. Dis Model Mech 7:907–913. doi:10.1242/dmm.013128

    PubMed Central  PubMed  Google Scholar 

  201. Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Erwin WM, Inman RD (2006) Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation. Spine 31:1094–1099

    PubMed  Google Scholar 

  203. Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31:873–882

    PubMed  Google Scholar 

  204. Korecky CL, Taboas JM, Tuan RS, Iatridis JC (2010) Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 1:18. doi:10.1186/scrt18

    Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the University of Padova and the Italian Ministry of University and Research. We wish to thank Enrico Moro for the helpful comments and critical reading and Giacomo Cavaliere for the expert image assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bonaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corallo, D., Trapani, V. & Bonaldo, P. The notochord: structure and functions. Cell. Mol. Life Sci. 72, 2989–3008 (2015). https://doi.org/10.1007/s00018-015-1897-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1897-z

Keywords

Navigation