Skip to main content
Log in

The vertebrate tail: a gene playground for evolution

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail’s regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hickman GC (1979) The mammalian tail: a review of functions. Mamm Rev 9:143–157

    Article  Google Scholar 

  2. Lauder GV (2014) Fish locomotion: recent advances and new directions. Ann Rev Mar Sci 7:521–545. https://doi.org/10.1146/annurev-marine-010814-015614

    Article  PubMed  Google Scholar 

  3. Manter JT (1940) The mechanics of swimming in the alligator. J Exp Zool 83:345–358

    Article  Google Scholar 

  4. Buck CW, Tolman N, Tolman W (1925) The tail as a balancing organ in mice. J Mammal 6:267–271

    Article  Google Scholar 

  5. Walker C, Vierck CJ Jr, Ritz LA (1998) Balance in the cat: role of the tail and effects of sacrocaudal transection. Behav Brain Res 91:41–47. https://doi.org/10.1016/S0166-4328(97)00101-0

    Article  CAS  PubMed  Google Scholar 

  6. O’Connor SM, Dawson TJ, Kram R, Donelan JM (2014) The kangaroo’s tail propels and powers pentapedal locomotion. Biol Lett 10:20140381. https://doi.org/10.1098/rsbl.2014.0381

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jagnandan K, Higham TE (2017) Lateral movements of a massive tail influence gecko locomotion: an integrative study comparing tail restriction and autotomy. Sci Rep 7:10865. https://doi.org/10.1038/s41598-017-11484-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn JC, Cristóbal-Azkarate J (2016) New World monkeys. Nat Educ Knowl 7:1

    Google Scholar 

  9. Hale ME (1996) Functional morphology of ventral tail bending and prehensile abilities of the seahorse, Hippocampus kuda. J Morphol 227:51–65. https://doi.org/10.1002/(SICI)1097-4687(199601)227:1%3c51:AID-JMOR4%3e3.0.CO;2-S

    Article  Google Scholar 

  10. Steen I, Steen JB (1965) Thermoregulatory importance of the beaver’s tail. Comp Biochem Physiol 15:267–270. https://doi.org/10.1016/0010-406X(65)90352-X

    Article  CAS  PubMed  Google Scholar 

  11. Stricker EM, Hainsworth FR (1971) Evaporative cooling in the rat: interaction with heat loss from the tail. Q J Exp Physiol Cogn Med Sci 56:231–241. https://doi.org/10.1113/expphysiol.1971.sp002124

    Article  CAS  PubMed  Google Scholar 

  12. Lynn SE, Borkovic BP, Russell AP (2013) Relative apportioning of resources to the body and regenerating tail in juvenile leopard geckos (Eublepharis macularius) maintained on different dietary rations. Physiol Biochem Zool 86:659–668

    Article  PubMed  Google Scholar 

  13. Arbour VM (2009) Estimating impact forces of tail club strikes by ankylosaurid dinosaurs. PLoS One 4:e6738. https://doi.org/10.1371/journal.pone.0006738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14. https://doi.org/10.1111/j.1469-7998.2008.00484.x

    Article  Google Scholar 

  15. Quaranta A, Siniscalchi M, Vallortigara G (2007) Asymmetric tail-wagging responses by dogs to different emotive stimuli. Curr Biol 17:R199–R201. https://doi.org/10.1016/j.cub.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  16. Holmdahl DE (1925) Experimentelle Untersuchungen uber die Lage der Grenze primarer und sekundarer Korperentwicklung beim Huhn. Anat Anz 59:393–396

    Google Scholar 

  17. Vogt W (1926) Ueber Wachstum und Gestaltungsbewegungen am hinteren Körperende der Amphibien. Anat Anz 61:62–65

    Google Scholar 

  18. Pasteels J (1939) La formation de la queue chez les Vertébrés. Ann la Société R Zool Belgique 70:33–51

    Google Scholar 

  19. Handrigan GR (2003) Concordia discors: duality in the origin of the vertebrate tail. J Anat 202:255–267. https://doi.org/10.1046/j.1469-7580.2003.00163.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilson V, Olivera-Martinez I, Storey KG (2009) Stem cells, signals and vertebrate body axis extension. Development 136:2133. https://doi.org/10.1242/dev.039172

    Article  CAS  Google Scholar 

  21. Stern CD, Charité J, Deschamps J et al (2006) Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems? Int J Dev Biol 50:3–15. https://doi.org/10.1387/ijdb.052095cs

    Article  CAS  PubMed  Google Scholar 

  22. Cambray N, Wilson V (2002) Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129:4855–4866. https://doi.org/10.1016/s0925-4773(98)00015-x

    Article  CAS  PubMed  Google Scholar 

  23. Tam PPL, Tan S-S (1992) The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development 115:703–715

    CAS  PubMed  Google Scholar 

  24. Sanders EJ, Khare MK, Ooi VC, Bellairs R (1986) An experimental and morphological analysis of the tail bud mesenchyme of the chick embryo. Anat Embryol (Berl) 174:179–185

    Article  CAS  Google Scholar 

  25. Tzouanacou E, Wegener A, Wymeersch FJ et al (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17:365–376. https://doi.org/10.1016/j.devcel.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Gouti M, Tsakiridis A, Wymeersch FJ et al (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12:e1001937. https://doi.org/10.1371/journal.pbio.1001937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gouti M, Delile J, Stamataki D et al (2017) A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41:1–19. https://doi.org/10.1016/j.devcel.2017.04.002

    Article  CAS  Google Scholar 

  28. Koch F, Scholze M, Wittler L et al (2017) Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev Cell 42:514–526. https://doi.org/10.1016/j.devcel.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  29. Wymeersch FJ, Huang Y, Blin G et al (2016) Position-dependent plasticity of distinct progenitor types in the primitive streak. Elife 5:e10042. https://doi.org/10.7554/eLife.10042

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsakiridis A, Wilson V (2015) Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F1000Research 4:100. https://doi.org/10.12688/f1000research.6345.2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cambray N, Wilson V (2007) Two distinct sources for a population of maturing axial progenitors. Development 134:2829–2840. https://doi.org/10.1242/dev.02877

    Article  CAS  PubMed  Google Scholar 

  32. Martin BL, Kimelman D (2012) Canonical wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22:223–232. https://doi.org/10.1016/j.devcel.2011.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Attardi A, Fulton T, Florescu M et al (2018) Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145:dev166728. https://doi.org/10.1242/dev.166728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henrique D, Abranches E, Verrier L, Storey KG (2015) Neuromesodermal progenitors and the making of the spinal cord. Development 142:2864–2875. https://doi.org/10.1242/dev.119768

    Article  CAS  PubMed  Google Scholar 

  35. Steventon B, Martinez Arias A (2017) Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. Dev Biol 432:3–13. https://doi.org/10.1016/j.ydbio.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  36. Aires R, Dias A, Mallo M (2018) Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 55:81–86. https://doi.org/10.1016/j.ceb.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  37. DeVeale B, Brokhman I, Mohseni P et al (2013) Oct4 is required~E7.5 for proliferation in the primitive streak. PLoS Genet 9:e1003957. https://doi.org/10.1371/journal.pgen.1003957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aires R, Jurberg AD, Leal F et al (2016) Oct4 is a key regulator of vertebrate trunk length diversity. Dev Cell 38:262–274. https://doi.org/10.1016/j.devcel.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  39. Frankenberg S, Pask A, Renfree MB (2010) The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Dev Biol 337:162–170. https://doi.org/10.1016/j.ydbio.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  40. Kellner S, Kikyo N (2010) Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 25:405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsubara Y, Hirasawa T, Egawa S et al (2017) Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nat Ecol Evol 1:1392–1399. https://doi.org/10.1038/s41559-017-0247-y

    Article  PubMed  Google Scholar 

  42. McPherron AC, Huynh TV, Lee S-J (2009) Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol 9:24. https://doi.org/10.1186/1471-213X-9-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McPherron AC, Lawle AM, Lee S-J (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22:260–264. https://doi.org/10.1038/10320

    Article  CAS  PubMed  Google Scholar 

  44. Jurberg AD, Aires R, Varela-Lasheras I et al (2013) Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell 25:451–462. https://doi.org/10.1016/j.devcel.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  45. Ho DM, Yeo CY, Whitman M (2010) The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. Mech Dev 127:485–495. https://doi.org/10.1016/j.mod.2010.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu J-P (2006) The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord. Development 133:2865–2874. https://doi.org/10.1242/dev.02478

    Article  CAS  PubMed  Google Scholar 

  47. Aires R, de Lemos L, Nóvoa A et al (2019) Tail bud progenitor activity relies on a network comprising Gdf11, Lin28, and Hox13 genes. Dev Cell 48:383–395. https://doi.org/10.1016/j.devcel.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  48. Robinton DA, Chal J, Lummertz da Rocha E et al (2019) The Lin28/let-7 pathway regulates the mammalian caudal body axis elongation program. Dev Cell 48:396–405. https://doi.org/10.1016/j.devcel.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  49. Yang M, Yang S-L, Herrlinger S et al (2015) Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 142:1616–1627. https://doi.org/10.1242/dev.120543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Viswanathan SR, Daley GQ (2010) Lin28: a MicroRNA regulator with a macro role. Cell 140:445–449. https://doi.org/10.1016/j.cell.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  51. Economides KD, Capecchi MR (2003) Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 130:2061–2069. https://doi.org/10.1242/dev.00432

    Article  CAS  PubMed  Google Scholar 

  52. Godwin AR, Capecchi MR (1998) Hoxc13 mutant mice lack external hair. Genes Dev 12:11–20. https://doi.org/10.1101/gad.12.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Young T, Rowland JE, van de Ven C et al (2009) Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 17:516–526. https://doi.org/10.1016/j.devcel.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  54. Osorno R, Tsakiridis A, Wong F et al (2012) The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development 139:2288–2298. https://doi.org/10.1242/dev.078071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109:243–270

    CAS  PubMed  Google Scholar 

  56. Williams DR, Shifley ET, Lather JD, Cole SE (2014) Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis. Dev Biol 388:159–169. https://doi.org/10.1016/j.ydbio.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Shifley ET, VanHorn KM, Perez-Balaguer A et al (2008) Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 135:899–908. https://doi.org/10.1242/dev.006742

    Article  CAS  PubMed  Google Scholar 

  58. Casaca A, Nóvoa A, Mallo M (2016) Hoxb6 can interfere with somitogenesis in the posterior embryo through a mechanism independent of its rib-promoting activity. Development 143:437–448. https://doi.org/10.1242/dev.133074

    Article  CAS  PubMed  Google Scholar 

  59. Oginuma M, Moncuquet P, Xiong F et al (2017) A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev Cell 40:342–353. https://doi.org/10.1016/j.devcel.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu H, Ng SC, Segr AV et al (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147:81–94. https://doi.org/10.1016/j.cell.2011.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wada N, Sugita S, Kolblinger G (1990) Spinal cord location of the motoneurons innervating the tail muscles of the cat. JAnat 173:101–107

    CAS  Google Scholar 

  62. Mackenzie SJ, Yi JL, Singla A et al (2015) Innervation and function of rat tail muscles for modeling cauda equina injury and repair. Muscle Nerve 52:94–102. https://doi.org/10.1002/mus.24498

    Article  PubMed  Google Scholar 

  63. Dawson R, Milne N, Warburton NM (2014) Muscular anatomy of the tail of the western grey kangaroo, Macropus fuliginosus. Aust J Zool 62:166–174. https://doi.org/10.1071/zo13085

    Article  Google Scholar 

  64. Chang H-T, Ruch TC (1947) Morphology of the spinal cord, spinal nerves, caudal plexus, tail segmentation, and daudal musculature of the spider monkey. Yale J Biol Med 19:345–377

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Organ JM (2010) Structure and function of platyrrhine caudal vertebrae. Anat Rec 293:730–745. https://doi.org/10.1002/ar.21129

    Article  Google Scholar 

  66. Ngwenya A, Patzke N, Spocter MA et al (2013) The continuously growing central nervous system of the nile crocodile (Crocodylus niloticus). Anat Rec 296:1489–1500. https://doi.org/10.1002/ar.22752

    Article  Google Scholar 

  67. Fisher RE, Geiger LA, Stroik LK et al (2012) A histological comparison of the original and regenerated tail in the green anole, Anolis carolinensis. Anat Rec 295:1609–1619. https://doi.org/10.1002/ar.22537

    Article  Google Scholar 

  68. Mchedlishvili L, Mazurov V, Grassme KS et al (2012) Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proc Natl Acad Sci 109:E2258–E2266. https://doi.org/10.1073/pnas.1116738109

    Article  PubMed  PubMed Central  Google Scholar 

  69. Simpson SB Jr (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. I. Initiation of regeneration and cartilage differentiation: the role of ependyma. J Morphol 114:425–435

    Article  PubMed  Google Scholar 

  70. Kamrin RP, Singer M (1955) The influence of the spinal cord in regeneration of the tail of the lizard, Anolis carolinensis. J Exp Zool 128:611–627

    Article  Google Scholar 

  71. Mchedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093. https://doi.org/10.1242/dev.02852

    Article  CAS  PubMed  Google Scholar 

  72. Albors AR, Tazaki A, Rost F et al (2015) Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. Elife 4:e10230. https://doi.org/10.7554/eLife.10230

    Article  Google Scholar 

  73. Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 80(298):1993–1996. https://doi.org/10.1126/science.1077804

    Article  CAS  Google Scholar 

  74. Sun AX, Londono R, Hudnall ML et al (2018) Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders. Proc Natl Acad Sci 115:E8256–E8265. https://doi.org/10.1073/pnas.1803780115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yusuf F, Brand-Saberi B (2006) The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol (Berl) 211:21–30. https://doi.org/10.1007/s00429-006-0119-8

    Article  Google Scholar 

  76. Londono R, Wenzhong W, Wang B et al (2017) Cartilage and muscle cell fate and origins during lizard tail regeneration. Front Bioeng Biotechnol 5:70. https://doi.org/10.3389/fbioe.2017.00070

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gargioli C, Slack JMW (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679. https://doi.org/10.1242/dev.01155

    Article  CAS  PubMed  Google Scholar 

  78. Aztekin C, Hiscock TW, Marioni JC et al (2019) Identification of a regeneration-organizing cell in the Xenopus tail. Science 80(364):653–658. https://doi.org/10.1126/science.aav9996

    Article  CAS  Google Scholar 

  79. Love NR, Chen Y, Ishibashi S et al (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228. https://doi.org/10.1038/ncb2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ferreira F, Raghunathan VK, Luxardi G et al (2018) Early redox activities modulate Xenopus tail regeneration. Nat Commun 9:4296. https://doi.org/10.1038/s41467-018-06614-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ho DM, Whitman M (2008) TGF-β signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 315:203–216. https://doi.org/10.1016/j.ydbio.2007.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48:21–31

    Article  CAS  PubMed  Google Scholar 

  83. Williams SA, Russo GA (2015) Evolution of the hominoid vertebral column: the long and the short of it. Evol Anthropol 24:15–32. https://doi.org/10.1002/evan.21437

    Article  PubMed  Google Scholar 

  84. Carlson MRJ, Komine Y, Bryant SV, Gardiner DM (2001) Expression of Hoxb13 and Hoxc10 in developing and regenerating axolotl limbs and tails. Dev Biol 229:396–406. https://doi.org/10.1006/dbio.2000.0104

    Article  CAS  PubMed  Google Scholar 

  85. Di-Poï N, Montoya-Burgos JI, Miller H et al (2010) Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 464:99–103. https://doi.org/10.1038/nature08789

    Article  CAS  PubMed  Google Scholar 

  86. Woltering JM, Vonk FJ, Müller H et al (2009) Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol 332:82–89. https://doi.org/10.1016/j.ydbio.2009.04.031

    Article  CAS  PubMed  Google Scholar 

  87. Guerreiro I, Nunes A, Woltering JM et al (2013) Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci USA 110:10682–10686. https://doi.org/10.1073/pnas.1300592110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Rita Aires, Ana Casaca and André Dias for their comments on the manuscript. Work in Mallo’s laboratory is supported by grants PTDC/BEX-BID/0899/2014 and LISBOA-01-0145-FEDER-030254 (FCT, Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Mallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallo, M. The vertebrate tail: a gene playground for evolution. Cell. Mol. Life Sci. 77, 1021–1030 (2020). https://doi.org/10.1007/s00018-019-03311-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03311-1

Keywords

Navigation