Skip to main content
Log in

Diversity and Transformation of the Community of Planktonic Freshwater Protists in the Estuarine Tributary Zone of a Large Plainland Reservoir: Metabarcoding of the 18S Ribosomal RNA Gene

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The first data on the composition and diversity of the summer community of planktonic protists in Usinsky Bay and the adjacent water area of the Kuybyshev Reservoir, obtained using high-throughput sequencing of the 18S ribosomal RNA gene, are presented. In the composition of the protist community, 1150 operational taxonomic units (OTU) were found; among them, representatives of the Stramenopiles–Alveolata–Rhizaria (SAR) supergroup predominate. In the complete library, Stramenopiles predominate by the number of OTU, represented (in descending order) by Chrysophyceae (8.5%), Opalozoa (8.3%), Diatomea (4.7%), and Oomycetes (Peronosporomycetes) (3.7%); by the number of nucleotide sequences, Alveolata (62.0%) and, first of all, Ciliata (56.9%). There are four interconnected communities of protists: of the river area, the bay itself, the mouth zone, and the reservoir outside the influence of the bay (above the mouth). The communities of the river area and the reservoir area above the mouth have the greatest contrast in composition. In general, the estuarine system studied has features of both ecocline and ecotone. The competitive relationships with cyanobacteria have the main effect on the development of the phototrophic component of eukaryotic plankton. Cyanobacterial “bloom” also affects the structure of the heterotrophic part of the community, although this effect is less pronounced. The development of Archaeplastida, Rhizaria, and minor groups of protists positively correlates with the portion of Metazoa sequences in the samples, which reflects the intensity of the metazooplankton press. Sequences belonging to Bolidophyceae and Rhodelphida, the taxa rare for freshwater, were found. These findings expand the biogeography of these groups that were found so far in very few freshwater reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Gall, L.Le., Lynn, D.H., Mann, D.G., Massana, R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, G., Youssef, N., Zlatogursky, V., and Zhang, Q., Revisions to the classification, nomenclature, and diversity of eukaryotes, J. Eukaryot. Microbiol., 2019, vol. 66, no. 1, pp. 4–119.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andersen, K.H., Aksnes, D.L., Berge, T., Fiksen, Ø., and Visser, A., Modelling emergent trophic strategies in plankton, J. Plankton Res., 2015, vol. 37, no. 5, pp. 862–868.

    Article  CAS  Google Scholar 

  3. Andreeva, V.A., Bykova, S.V., Umanskaya, M.V., and Tarasova, N.G., Free-living ciliates during the period of the greatest cyanobacterial water bloom in the Usinsky Bay (Kuibyshev Reservoir), Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2021, vol. 23, no. 5(103), pp. 127–134.

  4. Annenkova, N.V., Giner, C.R., and Logares, R., Tracing the origin of planktonic protists in an ancient lake, Microorganisms, 2020, vol. 8, no. 4, p. 543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Attrill, M.J. and Rundle, S.D., Ecotone or ecocline: ecological boundaries in estuaries, Estuar. Coast. Shelf Sci., 2002, vol. 55, no. 6, pp. 929–936.

    Article  Google Scholar 

  6. Bock, C., Olefeld, J.L., Vogt, J.C., Albach, D.C., and Boenigk, J., Phylogenetic and functional diversity of chrysophyceae in inland waters, Org. Diversity Evol., 2022, vol. 22, no. 2, pp. 327–341.

    Article  Google Scholar 

  7. Boenigk, J., Wodniok, S., Bock, C., Beisser, D., Hempe, C., Grossmann, L., Lange, A., and Jensen, M., Geographic distance and mountain ranges structure freshwater protist communities on a European scale, Metabarcoding Metagenomics, 2018, no. 2, p. e21519.

  8. Bykova, S.V., Structure and spatial distribution of planktonic ciliates from the Middle and Lower Volga reservoirs, Inland Water Biol., 2021, vol. 14, no. 4, pp. 377–390.

    Article  Google Scholar 

  9. Chakraborty, S., Nielsen, L.T., and Andersen, K.H., Trophic strategies of unicellular plankton, Am. Nat., 2017, vol. 189, no. 4, pp. E77–E90.

    Article  PubMed  Google Scholar 

  10. Charvet, S., Vincent, W.F., and Lovejoy, C., Chrysophytes and other protists in high arctic lakes: molecular gene surveys, pigment signatures and microscopy, Polar Biol., 2012, vol. 35, pp. 733–748.

    Article  Google Scholar 

  11. Cruaud, P., Vigneron, A., Fradette, M.S., Dorea, C.C., Culley, A.I., Rodriguez, M.J., and Charette, S.J., Annual protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: the Saint-Charles River (Canada), Front. Microbiol., 2019, vol. 10, p. 2359.

    Article  PubMed  PubMed Central  Google Scholar 

  12. David, G.M., Moreira, D., Reboul, G., Annenkova, N.V., Galindo, L.J., Bertolino, P., López-Archilla, A.I., Jardillier, L., and López-García, P., Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake, Env. Microbiol., 2021, vol. 23, no. 3, pp. 1436–1451.

    Article  CAS  Google Scholar 

  13. Debroas, D., Domaizon, I., Humbert, J.F., Jardillier, L., Lepère, C., Oudart, A., and Taïb, N., Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data, FEMS Microbiol. Ecol., 2017, vol. 93, no. 4, p. fix023.

    Article  Google Scholar 

  14. Dorrell, R.G., Azuma, T., Nomura, M., de Kerdrel, G.A., Paoli, L., Yang, S., Bowler, C., Ishii, K.-I., Miyashita, H., Gillian, H., Gile, G.H., and Kamikawa, R., Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 14, pp. 6914–6923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edgar, R., UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 2013, vol. 10, no. 10, pp. 996–998.

    Article  CAS  PubMed  Google Scholar 

  16. Fitoplankton Nizhnei Volgi: vodokhranilishcha i nizov’e reki (Phytoplankton of the Lower Volga: Reservoirs and Lower Reaches of the River), St. Petersburg: Nauka, 2006.

  17. Fujimoto, M., Cavaletto, J., Liebig, J.R., McCarthy, A., Vanderploeg, H.A., and Denef, V.J., Spatiotemporal distribution of bacterioplankton functional groups along a freshwater estuary to pelagic gradient in Lake Michigan, J. Great Lakes Res., 2016, vol. 42, no. 5, pp. 1036–1048.

    Article  CAS  Google Scholar 

  18. Gawryluk, R.M., Tikhonenkov, D.V., Hehenberger, E., Husnik, F., Mylnikov, A.P., and Keeling, P.J., Non-photosynthetic predators are sister to red algae, Nature, 2019, vol. 572, no. 7768, pp. 240–243.

    Article  CAS  PubMed  Google Scholar 

  19. Geisen, S., Vaulot, D., Mahé, F., Lara, E., de Vargas, C., and Bass, D., A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses, BioRxiv, 2019, p. 850610.

  20. Gong, J., Dong, J., Liu, X., and Massana, R., Extremely high copy numbers and polymorphisms of the rdna operon estimated from single cell analysis of oligotrich and peritrich ciliates, Protist, 2013, vol. 164, no. 3, pp. 369–379.

    Article  CAS  PubMed  Google Scholar 

  21. Gorokhova, O.G. and Zinchenko, T.D., Phytoplankton of the Usa River and its tributaries (Kuibyshev Reservoir basin), Povolzh. Ekol. Zh., 2018, no. 4, pp. 391–403.

  22. Herdendorf, C.E., Great Lakes estuaries, Estuaries, 1990, vol. 13, no. 4, pp. 493–503.

    Article  Google Scholar 

  23. Korneva, L.G., Fitoplankton Vodokhranilishch basseina Volgi (Phytoplankton of Volga River basin reservoirs), Kostroma: Kostromskoi Pechatnyi Dom, 2015.

  24. Kosolapov, D.B., Kopylov, A.I., Myl’nikova, Z.M., and Kosolapova, N.G., Structure of microbial planktonic community of the Sheksna Reservoir, Tr. Inst. Biol. Vnutr. Vod im. I.D. Papanina Ross. Akad. Nauk, 2016, no. 74 (77), pp. 5–20.

  25. Kosolapov, D.B., Kopylov, A.I., and Kosolapova, N.G., Heterotrophic nanoflagellates in water column and bottom sediments of the Rybinsk Reservoir: species composition, abundance, biomass and their grazing impact on bacteria, Inland Water Biol., 2017, vol. 10, no. 2, pp. 192–202.

    Article  Google Scholar 

  26. Kuwata, A., Yamada, K., Ichinomiya, M., Yoshikawa, S., Tragin, M., Vaulot, D., and Lopes dos Santos, A., Bolidophyceae, a sister picoplanktonic group of diatoms—a review, Front. Mar. Sci., 2018, vol. 5, p. 370.

    Article  Google Scholar 

  27. Li, R., Jiao, N., Warren, A., and Xu, D., Changes in community structure of active protistan assemblages from the lower pearl river to coastal waters of the South China Sea, Eur. J. Protistol., 2018, vol. 63, pp. 72–82.

    Article  PubMed  Google Scholar 

  28. Loken, L.C., Small, G.E., Finlay, J.C., Sterner, R.W., and Stanley, E.H., Nitrogen cycling in a freshwater estuary, Biogeochemistry, 2016, vol. 127, no. 2, pp. 199–216.

    Article  CAS  Google Scholar 

  29. Lozupone, C. and Knight, R., UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol., 2005, vol. 71, no. 12, pp. 8228–8235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mangot, J.F., Domaizon, I., Taib, N., Marouni, N., Duffaud, E., Bronner, G., and Debroas, D., Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes, Environ. Microbiol., 2013, vol. 15, no. 6, pp. 1745–1758.

    Article  CAS  PubMed  Google Scholar 

  31. Nowak, B.M. and Ptak, M., The effect of a water dam on Lake Powidzkie and its vicinity, Bull. Geogr. Phys. Geogr. Ser., 2018, vol. 15, no. 1, pp. 5–13.

    Article  Google Scholar 

  32. Obodovskyi, O., Habel, M., Szatten, D., Rozlach, Z., Babinski, Z., and Maerker, M., Assessment of the Dnieper alluvial riverbed stability affected by intervention discharge downstream of Kaniv dam, Water, 2020, vol. 12, no. 4, p. 1104.

    Article  Google Scholar 

  33. Plankton of Inland Waters, Likens, G.E., Ed., Academic Press, 2010.

    Google Scholar 

  34. Pruesse, E., Peplies, J., and Glöckner, F.O., SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 2012, vol. 28, pp. 1823–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2013, vol. 41, no. D1, pp. D590–D596.

    Article  CAS  PubMed  Google Scholar 

  36. Richards, T.A., Vepritskiy, A.A., Gouliamova, D.E., and Nierzwicki-Bauer, S.A., The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages, Environ. Microbiol., 2005, vol. 7, no. 9, pp. 1413–1425.

    Article  CAS  PubMed  Google Scholar 

  37. Rotar’, Yu.M., Planktonic ciliates of the Kuibyshev Reservoir, Cand. Sci. (Biol) Dissertation, St. Petersburg, 1995.

  38. Saad, J.F., Schiaffino, M.R., Vinocur, A., O’Farrell, I., Tell, G., and Izaguirre, I., Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features, J. Plankton Res., 2013, vol. 35, no. 6, pp. 1220–1233.

    Article  CAS  Google Scholar 

  39. Singer, D., Seppey, C.V., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L., Blandenier, Q., Debroas, D., Arjen de Groot, G.A., de Vargas, C., Domaizon, I., Duckert, C., Izaguirre, I., Koenig, I., Mataloni, G., Schiaffino, M.R., Mitchell, E.A.D., Geisen, S., and Lara, E., Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems, Environ. Int., 2021, vol. 146, p. 106262.

    Article  CAS  PubMed  Google Scholar 

  40. Stoecker, D.K., Hansen, P.J., Caron, D.A., and Mitra, A., Mixotrophy in the marine plankton, Ann. Rev. Mar. Sci., 2017, vol. 9, pp. 311–335.

    Article  PubMed  Google Scholar 

  41. Suzuki, S., Matsuzaki, R., Yamaguchi, H., and Kawachi, M., What happened before losses of photosynthesis in cryptophyte algae?, Mol. Biol. Evol., 2022, vol. 39, no. 2, p. msac001.

  42. Tarasova, N.G. and Umanskaya, M.V., Species composition and ecological and geographical characteristics of algoflora of plankton of the Usa river (Samara region)), Phytodiversity of Eastern Europe, 2021, vol. 15, no. 4, pp. 115–135.

    Google Scholar 

  43. Telesh, I.V. and Khlebovich, V.V., Principal processes within the estuarine salinity gradient: a review, Mar. Pollut. Bull., 2010, vol. 61, nos. 4–6, pp. 149–155.

    Article  CAS  PubMed  Google Scholar 

  44. Tikhonenkov, D.V., Zagumennyi, D.G., Belyaev, A.O., Plotnikov, A.O., and Gerasimov, Yu.V., Metabarcoding studies of the protists of the Volga River, in Vseros. konf. “Biologiya vodnykh ekosistem v XXI v.: fakty, gipotezy, tendentsii,” Tezisy dokladov (Vseross. Conf. “Biology of Aquatic Ecosystems in the 21st Century: Facts, Hypotheses, and Trends,” Abstracts of Papers), Yaroslavl, 2021, p. 181.

  45. Umanskaya, M.V., Bykova, S.V., Gorbunov, M.Yu., Krasnova, E.S., and Tarasova, N.G., Unicellular plankton transformation in the river-bay-reservoir system in the initial phase of cyanobacterial bloom, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2021, vol. 23, no. 5 (103), pp. 144–151.

  46. Wang, J., Fu, Z., Qiao, H., and Liu, F., Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China, Sci. Total Environ., 2019, vol. 650, pp. 1392–1402.

    Article  CAS  PubMed  Google Scholar 

  47. Weber, A.A. and Pawlowski, J., Can abundance of protists be inferred from sequence data: a case study of foraminifera, PLoS One, 2013, vol. 8, no. 2, p. e56739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wingett, S.W. and Andrews, S., FastQ Screen: a tool for multi-genome mapping and quality control., F1000Research, 2018, vol. 7, p. 1338.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu, H., Zhang, S., Ma, G., Zhang, Y., Li, Y., and Pei, H., 18S rRNA gene sequencing reveals significant influence of anthropogenic effects on microeukaryote diversity and composition along a river-to-estuary gradient ecosystem, Sci. Total Environ., 2020, vol. 705, p. 135910.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, F., Filker, S., Xu, K., Huang, P., and Zheng, S., Microeukaryote communities exhibit phyla-specific distance-decay patterns and an intimate link between seawater and sediment habitats in the Western Pacific Ocean, Deep-Sea Res. I: Oceanogr. Res. Pap., 2020, vol. 160, p. 103279.

    Google Scholar 

  51. Zharikov, V.V., The specifics of the Volga reservoirs as a habitat for hydrobionts (on the example of free-living ciliates), in Teoreticheskie problemy ekologii i evolyutsii (3-i Lyubishchevskie chteniya) (Theoretical Problems of Ecology and Evolution (3rd Lyubishchev Lectures)), Tolyatti: Inst. Ekol. Volzh. Bass. Ross. Akad. Nauk, 2000, pp. 64–72.

Download references

Funding

This work was carried out under a State Assignment on the topic “Change, Sustainability, and Conservation of Biological Diversity under the Influence of Global Climate Change and Intensive Anthropogenic Load on Ecosystems of the Volga Basin” (project № 122032500063-0) and was supported in part by a Governor’s grant in the field of science and technology approved by the order of the Governor of Samara oblast of June 30, 2021, project no. 202-r (grant no. 38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Umanskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umanskaya, M.V., Gorbunov, M.Y., Bykova, S.V. et al. Diversity and Transformation of the Community of Planktonic Freshwater Protists in the Estuarine Tributary Zone of a Large Plainland Reservoir: Metabarcoding of the 18S Ribosomal RNA Gene. Biol Bull Russ Acad Sci 50, 707–723 (2023). https://doi.org/10.1134/S1062359022602804

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022602804

Keywords:

Navigation