Skip to main content
Log in

Change in the concentration of intracellular ATP during adhesion of Rhodococcus ruber gt1 and Pseudomonas fluorescens C2 cells on carbon supports

  • Microbiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of immobilization of nitrile-utilizing bacteria Rhodococcus ruber gt1 and Pseudomonas fluorescens C2 by adhesion on carbon supports on the content of the intracellular ATP immediately after adsorption and after 2 h and 24–48 h after transfer of the adhered cells into a fresh nutrient medium was studied. Adhesion was shown to lead to a decreased concentration of ATP in a cell by one order of magnitude or more in the first hours in a fresh nutrient medium that can be attributed to energetic consumption upon the initiation of biofilm formation. A gradual rise in the quantity of ATP, which was calculated per 1 mg of adsorbed cells, was reported to take place in daily and two-daily biofilms, which confirms the cells remain viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, D.G., Ruiz, B., SanJose, C., et al., Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms, FEMS Microbiol. Letts., 1998, vol. 167, pp. 179–184.

    Article  CAS  Google Scholar 

  • Andrews, C.S., Denyer, S.P., Hall, B., et al., A comparison of the use of an ATP-based bioluminescent assay and image analysis for the assessment of bacterial adhesion to standard HEMA and biomimetic soft contact lenses, Biomaterials, 2001, vol. 22, pp. 3225–3233.

    Article  PubMed  CAS  Google Scholar 

  • Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.M., and El’-Registan, G.I., Mekhanizmy vyzhivaniya bakterii (Survival Mechanisms of Bacteria), Moscow: Meditsina, 2005.

    Google Scholar 

  • Debabov, V.G. and Yanenko, A.S., Biocatalytic hydrolysis of nitriles, Obzor. Zh. Khim., 2011, vol. 1, no. 4, pp. 376–394.

    Google Scholar 

  • Efremenko, E.N., Azizov, R.E., Raeva, A.A., et al., An approach to the rapid control of oil spill bioremediation by bioluminescent method of intracellular ATP determination, Int. Biodeterior. Biodegrad., 2005a, vol. 56, pp. 94–100.

    Article  CAS  Google Scholar 

  • Efremenko, E.N., Azizov, R.E., Makhlis, T.A., et al., Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method, Appl. Biochem. Microbiol., 2005b, vol. 41, no. 4, pp. 377–381.

    Article  CAS  Google Scholar 

  • Evtyugin, V.G., Margulis, A.B., Damshkaln, L.G., et al., Sorption of microorganisms by wide-porous agarose cryogels containing grafted aliphatic chains of different length, Microbiology (Moscow), 2009, vol. 78, no. 5, pp. 603–608.

    Article  CAS  Google Scholar 

  • Ghannoum, M. and O’Toole, G.A., Microbial Biofilms, Washington, DC: ASM Press, 2004.

    Google Scholar 

  • Halan, B., Buehler, K., and Schmid, A., Biofilms as living catalysts in continuous chemical syntheses, Trends Biotechnol., 2012, vol. 30, no. 9, pp. 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Ilyina, T.S., Romanova, Yu.M., and Gintsburg, A.L., Biofilms as a mode of existence of bacteria in external environment and host body: the phenomenon, genetic control, and regulation systems of development, Russ. J. Genet., 2004, vol. 40, no. 11, pp. 1189–1198.

    Article  CAS  Google Scholar 

  • Ippolitov, K.G., Sirotkin, A.S., Ponkratova, S.A., and Kyun, M., Patterns of biofilm development and characteristics of formation of extracellular polymeric substances by a Sphingomonas sp. strain, Biotekhnologiya, 2003, no. 3, pp. 3–11.

    Google Scholar 

  • Junter, G.-A. and Jouenne, T., Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse, Biotechnol. Adv., 2004, vol. 22, pp. 633–658.

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko, G.A., Perminova, L.V., Chuenko, T.V., et al., Carbonaceous macrostructured ceramic carriers for adsorptive immobilization of enzymes and microorganisms. 5. Immobilization of nongrowing cells of yeast and growing cells of alkanotrophic rhodococci, Biotekhnologiya, 2006, no. 1, pp. 76–83.

    Google Scholar 

  • Landini, P., Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli, Res. Microbiol., 2009, vol. 160, no. 4, pp. 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Lehocky-, M., St’ahel, P., Koutny-, M., et al., Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared teflon-like and organosilicon surfaces, J. Mater. Proc. Technol., 2009, vol. 209, pp. 2871–2875.

    Article  CAS  Google Scholar 

  • Ludwicka, A., Switalski, L.M., Lundin, A., et al., Bioluminescent assay for measurement of bacterial attachment to polyethylene, J. Microbiol. Methods, 1985, vol. 4, pp. 169–177.

    Article  CAS  Google Scholar 

  • Maksimov, A.Yu., Maksimova, Yu.G., Kuznetsova, M.V., et al., Immobilization of Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, on carbon supports, Appl. Biochem. Microbiol., 2007, vol. 43, no. 2, pp. 173–177.

    Article  CAS  Google Scholar 

  • Maksimova, Yu.G., Kovalenko, G.A., Maksimov, A.Yu., et al., Immobilized of nongrowing Rhodococcus ruber cells as heterogeneous biocatalysts for the hydration of acrylonitrile to acrylamide, Kataliz Prom., 2008, no. 1, pp. 44–50.

    Google Scholar 

  • Maksimova, Yu.G., Maksimov, A.Yu., Demakov, V.A., et al., Hydrolysis of acrylonitrile by nitrile-converting bacterial cells immobilized on fibrous carbon adsorbents, Biotekhnologiya, 2010, no. 4, pp. 51–58.

    Google Scholar 

  • Netrusov, A.I. and Kotova, I.B., Mikrobiologiya: uchebnik dlya studentov vysshikh uchebnykh zavedenii (Microbiology: a Textbook for Students in Higher Education), Moscow: Akademiya, 2006.

    Google Scholar 

  • Panikov, N.S. and Nikolaev, Yu.A., Growth and adhesion of Pseudomonas fluorescens in a batch culture: a kinetic analysis of the action of extracellular antiadhesins, Microbiology (Moscow), 2002, vol. 71, no. 5, pp. 532–540.

    Article  CAS  Google Scholar 

  • Plakunov, V.K. and Nikolaev, Yu.A., Microbial biofilms: prospects for use in wastewater treatment, Voda: Khim. Ekol., 2008, no. 2, pp. 11–13.

    Google Scholar 

  • Romanova, N.A., Brovko, L.Yu., and Ugarova, N.N., Comparative assessment of methods of intracellular ATP extraction from different types of microorganisms for bioluminescent determination of microbial cells, Appl. Biochem. Microbiol., 1997, vol. 33, no. 3, pp. 306–311.

    Google Scholar 

  • Rosche, B., Li, X.Z., Hauer, B., et al., Microbial biofilms: a concept for industrial catalysis?, Trends Biotechnol., 2009, vol. 27, no. 11, pp. 636–643.

    Article  PubMed  CAS  Google Scholar 

  • Rubtsova, E.V., Kuyukina, M.S., and Ivshina, I.B., Effect of cultivation conditions on the adhesive activity of Rhodococcus cells towards n-hexadecane, Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 452–459.

    Article  CAS  Google Scholar 

  • Tkachenko, A.G., Chudinov, A.A., and Nagorskikh, T.G., Role of energy status and transport of putrescine in providing homeostasis of the intracellular pH during alkaline and acidic shifts in Escherichia coli, Mikrobiologiya, 1993, vol. 62, no. 1, pp. 37–45.

    CAS  Google Scholar 

  • Tkachenko, A.G., Pshenichnov, M.R., Salakhetdinova, O.Ya., and Nesterova, L.Yu., The role of putrescine and potassium transport in the regulation of DNA topology during Escherichia coli adaptation to heat stress, Microbiology (Moscow), 1998, vol. 67, no. 5, pp. 494–498.

    CAS  Google Scholar 

  • Tkachenko, A.G., Molekulyarnye mekhanizmy stressornykh otvetov u mikroorganizmov (Molecular Mechanisms of Stress Responses in Microorganisms), Yekaterinburg: Izd. UrO RAN, 2012.

    Google Scholar 

  • O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461.

    Article  PubMed  Google Scholar 

  • Tsuneda, S., Aikawa, H., Hayashi, H., et al., Extracellular polymeric substances responsible for bacterial adhesion onto solid surface, FEMS Microbiol. Letts., 2003, vol. 223, pp. 287–292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Maksimova.

Additional information

Original Russian Text © Yu.G. Maksimova, V.A. Demakov, 2014, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2014, No. 5, pp. 456–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G., Demakov, V.A. Change in the concentration of intracellular ATP during adhesion of Rhodococcus ruber gt1 and Pseudomonas fluorescens C2 cells on carbon supports. Biol Bull Russ Acad Sci 41, 412–417 (2014). https://doi.org/10.1134/S1062359014050070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359014050070

Keywords

Navigation