Skip to main content
Log in

Membrane Chromatographic Test System for Determining Bisphenol A in Drinking Water Based on the Use of an Aptamer

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

For the rapid determination of bisphenol A in drinking water, a membrane test system has been developed using a conjugate of gold nanoparticles with an aptamer that specifically binds the target analyte, and a conjugate of mercaptosuccinic acid with a carrier protein impregnated in the test zone of the strip. The working principle of the test system is based on the binding of free gold nanoparticles in the test zone, formed as a result of the competitive interaction of the aptamer with bisphenol A and its release from the surface of gold nanoparticles. Conjugates of gold nanoparticles with aptamers of different compositions were obtained and tested. Optimal conditions were selected to ensure the achievement of a low detection limit for bisphenol A. The developed test system allows the detection of bisphenol A within 15 min with a detection limit of 13.5 ng/mL. The suitability of the test system was confirmed when testing drinking water; the recovery values of bisphenol A ranged from 88.2 to 101.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Tarafdar, A., Sirohi, R., Balakumaran, P.A., Reshmy, R., Madhavan, A., Sindhu, R., Binod, P., Kumar, Y., Kumar, D., and Sim, S.J., J. Hazard. Mater., 2022, vol. 423, p. 127097.

    Article  CAS  PubMed  Google Scholar 

  2. Ni, L., Zhong, J., Chi, H., Lin, N., and Liu, Z., Foods, 2023, vol. 12, p. 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mishra, A., Goel, D., and Shankar, S., Environ. Monit. Assess., 2023, vol. 195, p. 1352.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X., Nag, R., Brunton, N.P., Siddique, M.A.B., Harrison, S.M., Monahan, F.J., and Cummins, E., Environ. Res., 2022, vol. 213, p. 113734.

    Article  CAS  PubMed  Google Scholar 

  5. Abraham, A. and Chakraborty, P., Rev. Environ. Health, 2020, vol. 35, p. 201.

    Article  CAS  PubMed  Google Scholar 

  6. Ganichev, P., Markova, O., Eremin, G., Zaritskaya, E., and Petrova, M., Zdorov’e—Osnova Chelovecheskogo Potentsiala: Probl. Puti Ikh Resheniya, 2020, vol. 15, p. 239.

    Google Scholar 

  7. World Health Organization, Guidelines for Drinking Water Quality, WHO, 2008, 3rd ed., vol. 1.

    Google Scholar 

  8. Dang, A., Sieng, M., Pesek, J.J., and Matyska, M.T., J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, p. 438.

    Article  CAS  Google Scholar 

  9. Hadjmohammadi, M.R. and Saeidi, I., Monatsh. Chem., 2010, vol. 141, p. 501.

    Article  CAS  Google Scholar 

  10. Alnaimat, A.S., Barciela-Alonso, M.C., and Bermejo-Barrera, P., Microchem. J., 2019, vol. 147, p. 598.

    Article  CAS  Google Scholar 

  11. Deceuninck, Y., Bichon, E., Marchand, P., Boquien, C.-Y., Legrand, A., Boscher, C., Antignac, J.P., and Le Bizec, B., Anal. Bioanal. Chem., 2015, vol. 407, p. 2485.

    Article  CAS  PubMed  Google Scholar 

  12. Cunha, S.C., Inácio, T., Almada, M., Ferreira, R., and Fernandes, J.O., Food Res. Int., 2020, vol. 135, p. 109293.

    Article  CAS  PubMed  Google Scholar 

  13. Mei, Z., Chu, H., Chen, W., Xue, F., Liu, J., Xu, H., Zhang, R., and Zheng, L., Biosens. Bioelectron., 2013, vol. 39, p. 26.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, D., Yang, J., Ye, J., Xu, L., Xu, H., Zhan, S., Xia, B., and Wang, L., Anal. Biochem., 2016, vol. 499, p. 51.

    Article  CAS  PubMed  Google Scholar 

  15. Lei, Y., Zhang, Q., Fang, L., Akash, M.S.H., Rehman, K., Liu, Z., Shi, W., and Chen, S., Drug Test. Anal., 2014, vol. 6, p. 1020.

    Article  CAS  PubMed  Google Scholar 

  16. Bahadır, E.B. and Sezgintürk, M.K., TrAC, Trends Anal. Chem., 2016, vol. 82, p. 286.

    Article  Google Scholar 

  17. Chatterjee, S. and Mukhopadhyay, S., J. Immunoassay Immunochem., 2022, vol. 43, p. 579.

    Article  CAS  PubMed  Google Scholar 

  18. Mei, Z., Deng, Y., Chu, H., Xue, F., Zhong, Y., Wu, J., Yang, H., Wang, Z., Zheng, L., and Chen, W., Microchim. Acta, 2013, vol. 180, p. 279.

    Article  CAS  Google Scholar 

  19. Mei, Z., Qu, W., Deng, Y., Chu, H., Cao, J., Xue, F., Zheng, L., El-Nezamic, H.S., Wu, Y., and Chen, W., Biosens. Bioelectron., 2013, vol. 49, p. 457.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, A. and Yang, S., Biosens. Bioelectron., 2015, vol. 71, p. 230.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Z., Wu, Q., Chen, J., Ni, X., and Dai, J., Virol. Sin., 2020, vol. 35, p. 351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, H., Liu, X., Gan, L., Fan, D., Sun, X., Zhang, Z., and Wu, P., Bioanalysis, 2023, vol. 15, p. 513.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, H., Jing, W., and Cheng, X., Zoonoses, 2023, vol. 3, p. 22.

    Article  Google Scholar 

  24. Zhang, W., Liu, Q.X., Guo, Z.H., and Lin, J.S., Molecules, 2018, vol. 23, p. 344.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alkhamis, O., Canoura, J., Yu, H., Liu, Y., and Xiao, Y., TrAC, Trends Anal. Chem., 2019, vol. 121, p. 115699.

    Article  CAS  Google Scholar 

  26. Adachi, T. and Nakamura, Y., Molecules, 2019, vol. 24, p. 4229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caglayan, M.O., Şahin, S., and Üstündağ, Z., Crit. Rev. Anal. Chem., 2022, p. 1.

  28. Rajabnejad, S.-H., Badibostan, H., Verdian, A., Karimi, G.R., Fooladi, E., and Feizy, J., Microchem. J., 2020, vol. 155, p. 104722.

    Article  CAS  Google Scholar 

  29. Shayesteh, O.H. and Ghavami, R., Microchim. Acta, 2019, vol. 186, p. 485.

    Article  Google Scholar 

  30. Luo, C., Wen, W., Lin, F., Zhang, X., Gu, H., and Wang, S., RSC Adv., 2015, vol. 5, p. 10994.

    Article  CAS  Google Scholar 

  31. Retnakumari, A., Setua, S., Menon, D., Ravindran, P., Muhammed, H., Pradeep, T., Nair, S., and Koyakutty, M., Nanotecnology, 2010, vol. 21, p. 055103.

    Article  Google Scholar 

  32. Arivarasan, A., Bharathi, S., Ezhilarasi, S., Arunpandiyan, S., and Jayavel, R., J. Inorg. Organomet. Polym. Mater., 2019, vol. 29, p. 859.

    Article  Google Scholar 

  33. Komova, N.S., Serebrennikova, K.V., Berlina, A.N., Zherdev, A.V., and Dzantiev, B.B., Limnol. Freshwater Biol., 2022, vol. 2022, p. 1305.

    Article  Google Scholar 

  34. Askari, E. and Naghib, S.M., Int. J. Electrochem. Sci., 2018, vol. 13, p. 886.

    Article  CAS  Google Scholar 

  35. Giorgi-Coll, S., Marin, M.J., Sule, O., Hutchinson, P.J., and Carpenter, K.L.H., Microchim. Acta, 2019, vol. 187, p. 13.

    Article  Google Scholar 

  36. Królikowska, A. and Bukowska, J., J. Raman Spectrosc., 2007, vol. 38, p. 936.

    Article  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Russian Science Foundation, grant 22-13-00293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komova, N.S., Serebrennikova, K.V., Berlina, A.N. et al. Membrane Chromatographic Test System for Determining Bisphenol A in Drinking Water Based on the Use of an Aptamer. J Anal Chem 79, 476–485 (2024). https://doi.org/10.1134/S1061934824040099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824040099

Keywords:

Navigation