Skip to main content
Log in

Enrichment of MnO2 Nanoparticles with Different N-Doped Carbon Dots as a Robust H2O2 Sensor: a Comparative Study

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

This study is focused on synthesizing environmentally friendly nano-probes for rapid and sensitive detection of H2O2. Biogenic manganese oxide nanoparticles were prepared and capped with two different types of nitrogen doped carbon dots. Nanocomposites are designated as NC1 (semicarbazide hydrochloride as a dopant source) and NC2 (urea as a dopant source). Synthesized nanocomposites (NC1 and NC2) were characterized by different techniques. UV-visible spectra depicted peaks at 298 nm (NC1) and 299 nm (NC2). FTIR confirmed the presence of different functional groups at the surface of nanocomposites. XRD showed the amorphous carbon structure of nanocomposites with particle size of 7 nm (NC1) and 6 nm (NC2). Raman spectra showed the graphitic carbon structure. In both cases, D and G bands were observed with ID/IG ratio equal to 0.76 for NC1 and 0.16 for NC2. NC1 depicted linearity for the concentration range of 10–40 µM with LOD and LOQ of 7 and 24 µM, respectively, while NC2 exhibited linearity over the concentration range of 50–80 µM with LOD of 12 µM and LOQ of 40 µM. Percentage recoveries for spiked samples were calculated to be 99.8–101.8 and 98.5–99.1% for NC1 and NC2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Li, S., Li, H., Chen, F., Liu, J., Zhang, H., Yang, Z., and Wang, B., Dyes Pigm., 2016, vol. 125, p. 64.

    Article  Google Scholar 

  2. Teodoro, R.B.K., Migliorini, L.F., Christinelli, A.W., and Correa, S.D., Carbohydr. Polym., 2019, vol. 212, p. 235.

    Article  CAS  PubMed  Google Scholar 

  3. Guan, F.J., Huang, Z.N., Zou, J., Jiang, Y.X., Peng, M.D., and Yu, G.J., Ecotoxicol. Environ. Saf., 2020, vol. 190, 110123. https://doi.org/10.1016/j.ecoenv.2019.110123

    Article  CAS  PubMed  Google Scholar 

  4. Lu, J., Zhang, H., Li, S., Guo, S., Shen, L., Zhou, T., and Zhang, Y., Inorg. Chem., 2020, vol. 59, no. 5, p. 3152.

    Article  CAS  PubMed  Google Scholar 

  5. Mahdavi, B., Paydarfard, S., Zangeneh, M.M., Goorani, S., Seydi, N., and Zangeneh, A., Appl. Organomet. Chem., 2020, vol. 34, no. 1, p. 1.

    Article  Google Scholar 

  6. Dawadi, S., Gupta, A., Khatri, M., Budhathoki, B., Lamichhane, G., and Parajuli, N., Bull. Mater. Sci., 2020, vol. 43, p. 277. https://doi.org/10.1007/s12034-020-02247-8

    Article  CAS  Google Scholar 

  7. Chen, J., Shu, Y., Li, H., Xu, Q., and Hu, X., Talanta, 2018, vol. 189, p. 254.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, H., Ma, H., Xu, H., Wen, J., Huang, Z., Qiu, Y., and Gu, C., Anal. Bioanal. Chem., 2019, vol. 411, no. 1, p. 129.

    Article  CAS  PubMed  Google Scholar 

  9. Jones, M.R. and Lee, K., Microchem. J., 2019, vol. 147, p. 1021.

    Article  CAS  Google Scholar 

  10. Liu, Q., Chen, P., Xu, Z., Chen, M., Ding, Y., Yue, K., and Xu, J., Sens. Actuators, B, 2017, vol. 251, p. 339.

    Article  CAS  Google Scholar 

  11. Mercante, A.L., Facure, M.H.M., Sanfelice, C.R., Migliorini, L.F., Mattoso, C.H.L., and Correa, S.D., App-l. Surf. Sci., 2017, vol. 407, p. 162.

    Article  CAS  Google Scholar 

  12. McCurdy, Jr. H.W., and Bell, F.H., Talanta, 1966, vol. 13, no. 7, p. 925.

    Article  CAS  PubMed  Google Scholar 

  13. Guo, Z., Shen, X.H., and Li, L., Microchim. Acta, 1999, vol. 131, nos. 3–4, p. 171.

    Article  CAS  Google Scholar 

  14. Christé, S., da Silva, E.G.C.J., and da Silva, P.L., Materials, 2020, vol. 13, no. 3, p. 23.

    Article  Google Scholar 

  15. Szmyt, P.M., Buszewski, B., and Kopciuch, G.R., Mater. Chem. Phys., 2020, vol. 2019, p. 122484. https://doi.org/10.1016/j.matchemphys.2019.122484

    Article  CAS  Google Scholar 

  16. Ayyanar, M. and Subash-Babu, P., Asian Pac. J. Trop. Biomed., 2012, vol. 2, no. 3, p. 240.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar, V., Yadav, C.S., and Yadav, K.S., J. Chem. Technol. Biotechnol., 2010, vol. 85, no. 10, p. 1301.

    Article  CAS  Google Scholar 

  18. Pai, J.R., Valder, B., Palatty, L.P., Shivashankara, R.A. and Baliga, S.M., in Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease, Watson, R.R. and Preedy, R.V., Eds., London: Academic, 2013, p. 369.

    Google Scholar 

  19. Bitencourt, R.E.P., in Diabetes, Preedy, R.V., Ed., London: Academic, 2020, p. 343.

    Google Scholar 

  20. Joshi, N.C., Siddiqui, F., Salman, M., and Singh, A., Asian Pacific J. Health Sci., 2020, vol. 7, no. 3, p. 27

    Google Scholar 

  21. Bano, D., Chandra, S., Yadav, K.P., Singh, K.V., and Hasan, H.S., J. Photochem. Photobiol. A: Chem., 2020, vol. 398, p. 112558. https://doi.org/10.1016/j.jphotochem.2020.112558

    Article  CAS  Google Scholar 

  22. Raja, P.M.V. and Barron, A.R., Nature, 1934, vol. 134, no. 3384, p. 366.

    Article  Google Scholar 

  23. Verma, G. and Mishra, M., World J. Pharm. Res., 2018, vol. 7, no. 11, p. 1170.

    Google Scholar 

  24. Patel, P.J. and Parsania, H.P., in Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications, Shimpi, N.G., Ed., London: Woodhead, 2017, p. 55.

    Google Scholar 

  25. Wilson, N.H., An Approach to Chemical Analysis, New York: Pergamon, 1966, p. 222.

    Book  Google Scholar 

  26. Dutta, A., Fourier Transform Infrared Spectroscopy, Thomas, S., Thomas, R., Zachariah, K.A., and Mishra, R.K., Eds., Amsterdam: Elsevier, 2017, p. 73.

    Google Scholar 

  27. Zhu, Z., Lin, X., Wu, L., Zhao, C., Zheng, Y., Liu, A., and Lin, L., Sens. Actuators, B, 2018, vol. 274, p. 609.

    Article  CAS  Google Scholar 

  28. Garg, D., Mehta, A., Mishra, A., and Basu, S., Spectrochim. Acta, Part A, 2018, vol. 192, p. 411.

    Article  CAS  Google Scholar 

  29. Liu, X., Liu, J., Zheng, B., Yan, L., Dai, J., Zhuang, Z., and Xiao, D., New J. Chem., 2017, vol. 41, no. 19, p. 10607.

    Article  CAS  Google Scholar 

  30. Gong, X., Lu, W., Paau, C.M., Hu, Q., Wu, X., Shuang, S., and Choi, F.M.M., Anal. Chim. Acta, 2015, vol. 861, p. 74.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z., Cai, X., Lin, X., Zheng, Y., Wu, Y., Chen, P., Lin, L., Shaohuang, W., and Lin, X., Anal. Methods, 2016, vol. 8, no. 11, p. 2366.

    Article  CAS  Google Scholar 

  32. Edison, I.J.N.T., Atchudan, R., Sethuraman, G.M., Shim, J.J., and Lee, R.Y., J. Photochem. Photobiol., B, 2016, vol. 161, p. 154.

    Article  CAS  PubMed  Google Scholar 

  33. Buzea, C. and Pacheco, I., in EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials, Shukla, A., Ed., New Delhi: Springer, 2017, p. 3

    Google Scholar 

  34. Chandrasekaran, P., Arul, V., and Sethuraman, G.M., J. Fluoresc., 2020, vol. 30, no. 1, p. 103.

    Article  CAS  PubMed  Google Scholar 

  35. Mewada, A., Pandey, S., Shinde, S., Mishra, N., Oza, G., Thakur, M., and Sharon, M., Mater. Sci. Eng., C, 2013, vol. 33, no. 5, p. 2914.

    Article  CAS  Google Scholar 

  36. Wang, Q., Pang, H., Dong, Y., Chi, Y., and Fu, F., Microchim. Acta, 2018, vol. 185, no. 6, p. 291.

    Article  Google Scholar 

  37. Mohammed, A. and Abdullah, A., Proc. Int. Conf. on Hydraulics and Pneumatics, Băile Govora, Romania, 2018, p. 7.

  38. Zheng, J., Song, D., Chen, H., Xu, J., Alharbi, S.N., Hayat, T., and Zhang, M., Chin. Chem. Lett., 2020, vol. 31, no. 5, p. 1109.

    Article  CAS  Google Scholar 

  39. Feng, Y., Li, Y., Yu, S., Yang, Q., Tong, Y., and Ye, C.B., Analyst, 2021, vol. 146, no. 16, p. 5135.

    Article  CAS  PubMed  Google Scholar 

  40. Vigil, D.D.M., Delgado, P.F., Martnez, C.V., and Ortiz, L.A., Int. J. Chem. React. Eng., 2008, vol. 6, no. 1. https://doi.org/10.2202/1542-6580.1616

  41. Zhang, Y., Zhang, J.Y., Xia, D.X., Hou, Q.X., Feng, T.C., Wang, X.J., and Deng, L., Chin. Chem. Lett., 2013, vol. 24, no. 12, p. 1053.

    Article  CAS  Google Scholar 

  42. Chen, Z., Zhang, C., Wu, Q., Li, K., and Tan, L., Sens. Actuators, B, 2015, vol. 220, p. 314.

    Article  CAS  Google Scholar 

  43. Niu, T., Deng, X., Wang, R., and Zhou, C., Mater. Today Chem., 2018, vol. 7, p. 35.

    Article  CAS  Google Scholar 

  44. Di, W., Zhang, X., and Qin, W., Appl. Surf. Sci., 2017, vol. 400, p. 200.

    Article  CAS  Google Scholar 

  45. Huang, Z., Zheng, L., Feng, F., Chen, Y., Wang, Z., Lin, Z., and Weng, S., Sensors, 2018, vol. 18, no. 8, p. 2525. https://doi.org/10.3390/s18082525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, L. and Li, L., Anal. Methods, 2016, vol. 8, no. 37, p. 6691.

    Article  CAS  Google Scholar 

  47. Winterbourn, C.C., Toxicol. Lett., 1995, vols. 82–83, p. 969.

    Article  PubMed  Google Scholar 

  48. Hu, L., Yuan, Y., Zhang, L., Zhao, J., Majeed, S., and Xu, G. Anal. Chim. Acta, 2013, vol. 762, p. 83.

    Article  CAS  PubMed  Google Scholar 

  49. Dong, Y., Zhang, J., Jiang, P., Wang, G., Wu, X., Zhao, H., and Zhang, C., New J. Chem., 2015, vol. 39, no. 5, p. 4141.

    Article  CAS  Google Scholar 

  50. Zhang, L., Hai, X., Xia, C., Chen, X. W., and Wang, J. H. Sens. Actuators, B, 2017, vol. 248, p. 374.

    Article  CAS  Google Scholar 

  51. Honarasa, F., Kamshoori, F. H., Fathi, S., and Motamedifar, Z., Microchim. Acta, 2019, vol. 186, no. 4, p. 234. https://doi.org/10.1007/s00604-019-3344-6

    Article  CAS  Google Scholar 

  52. Shi, W., Wang, Q., Long, Y., Cheng, Z., Chen, S., Zheng, H., and Huang, Y., Chem. Commun., 2011, vol. 47, no. 23, p. 6695.

    Article  CAS  Google Scholar 

  53. Ge, J., Xing, K., Geng, X., Hu, Y.L., Shen, X.P., Zhang, L., and Li, Z.H., Microchim. Acta, 2018, vol. 185, no. 12, p. 559. https://doi.org/10.1007/s00604-018-3099-5

    Article  CAS  Google Scholar 

  54. Bakre, V.P., Tilve, G.S., and Shirsat, N.R., Arab. J. Chem., 2020, vol. 13, no. 11, p. 7637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zaib.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaib, M., Safdar, A., Shahzadi, T. et al. Enrichment of MnO2 Nanoparticles with Different N-Doped Carbon Dots as a Robust H2O2 Sensor: a Comparative Study. J Anal Chem 78, 704–717 (2023). https://doi.org/10.1134/S1061934823060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823060126

Keywords:

Navigation