Skip to main content
Log in

A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) with unique optical properties, such as easy operation and visualized assay, have a great ability to detect different types of analytes. In the present study, a novel AuNPs based aptasensor strategy for the detection of trinitrotoluene (TNT) was used. For this purpose, two different batches of AuNPs were functionalized by thiol modified DNA probes (P1 and P2) complementary to 5' and 3' ends of anti-TNT aptamer. Then, two batches of gold nanoprobes were mixed and the addition of anti-TNT aptamer induced the assembly and aggregation of nanoparticles. However, according to this strategy, in the presence of TNT, aptamer can bind to its target molecule (TNT) and prevent nanoparticles aggregation. The results indicate that the produced aptasensor can detect TNT molecule with high specificity (detection limit of 6 pM). In conclusion, this gold nanoparticle-based colorimetric anti-TNT aptasensor can be used in the next investigations with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Clausen, J., Robb, J., Curry, D., and Korte, N., Environ. Pollut., 2004, vol. 129, p. 13.

    Article  CAS  PubMed  Google Scholar 

  2. Harkonen, H., Karki, M., and Lahti, A., Am. J. Ophthalmol., 1983, vol. 95, p. 807.

    Article  CAS  PubMed  Google Scholar 

  3. Sabbioni, G., Liu, Y-Y., Yan, H., and Sepai, O., Carcinogenesis, 2005, vol. 26, p. 1272.

    Article  CAS  PubMed  Google Scholar 

  4. Shinkai, Y., Li, S., Kikuchi, T., and Kumagai, Y., J. Toxicolog. Sci., 2015, vol. 40, p. 597.

    Article  CAS  Google Scholar 

  5. Ban, R., Zheng, F., and Zhang, J., Anal. Methods, 2015, vol. 7, p. 1732

    Article  CAS  Google Scholar 

  6. Germain, M.E. and Knapp, M.J., Chem. Soc. Rev., 2009, vol. 38, p. 2543.

    Article  CAS  PubMed  Google Scholar 

  7. Marshall, M. and Oxley, J.C., Aspects of Explosives Detection, New York: Elsevier, 2011.

    Google Scholar 

  8. Meaney, M.S. and McGuffin, V.L., Anal. Bioanal. Chem., 2008, vol. 391, p. 2557.

    Article  CAS  PubMed  Google Scholar 

  9. Huang, X. and El-Sayed, M.A., J. Adv. Res., 2010, vol. 1, p. 13.

    Article  Google Scholar 

  10. Ghosh, S.K. and Pal, T., Chem. Rev., 2007, vol. 107, p. 4797.

    Article  CAS  PubMed  Google Scholar 

  11. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25, Heidelberg: Springer, 2013.

  12. Papavassiliou, G.C., Chemistry, 1979, vol. 12, p. 185.

    CAS  Google Scholar 

  13. Perrault, S.D. and Chan, W.C., J. Am. Chem. Soc., 2009, vol. 131, p. 17042.

    Article  CAS  PubMed  Google Scholar 

  14. Chah, S., Hammond, M.R., and Zare, R.N., Chem. Biol., 2005, vol. 12, p. 323.

    Article  CAS  PubMed  Google Scholar 

  15. Dykman, L. and Khlebtsov, N., Acta Nat., 2011, vol. 3, p. 34.

    Article  CAS  Google Scholar 

  16. Rezaei, Z. and Ranjbar, B., Eng. Life Sci., 2016, vol. 17, p. 165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xia, F., Zuo, X., Yang, R., Xiao, Y., Kang, D., Vallee-Belisle, A., Gong, X., Yuen, J.D., Hsu, B.B., Heeger, A.J., and Plaxco, K.W., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, X., Daniel, W.L., Wei, W., and Mirkin, C.A., Small, 2010, vol. 6, p. 623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, X., Liu, Q., Jing, C., Li, Y., Li, D., Luo, W., Wen, Y., He, Y., Huang, Q., Long, Y-T., and Fan, C., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 11994.

    Article  CAS  Google Scholar 

  20. Apyari, V.V., Arkhipova, V.V., Dmitrienko, S.G., and Zolotov, Y.A., J. Anal. Chem., 2014, vol. 69, p. 1.

    Article  CAS  Google Scholar 

  21. Terenteva, E.A., Arkhipova, V.V., Apyari, V.V., Volkov, P.A., and Dmitrienko, S.G., Sens. Actuators, B, 2017, vol. 241, p. 390.

    Article  CAS  Google Scholar 

  22. Famulok, M., Mayer, G., and Blind, M., Acc. Chem. Res., 2000, vol. 33, p. 591.

    Article  CAS  PubMed  Google Scholar 

  23. Hermann, T. and Patel, D.J., Science, 2000, vol. 287, p. 820.

    Article  CAS  PubMed  Google Scholar 

  24. Jayasena, S.D., Clin. Chem., 1999, vol. 45, p. 1628.

    Article  CAS  PubMed  Google Scholar 

  25. Ellington, A.D. and Szostak, J.W., Nature, 1990, vol. 346, p. 818.

    Article  CAS  PubMed  Google Scholar 

  26. Tuerk, C. and Gold, L., Science, 1990, vol. 249, p. 505.

    Article  CAS  PubMed  Google Scholar 

  27. Mosing, R.K., Mendonsa, S.D., and Bowser, M.T., Anal. Chem., 2005, vol. 77, p. 6107.

    Article  CAS  PubMed  Google Scholar 

  28. Sefah, K., Shangguan, D., Xiong, X., O’Dono-ghue, M.B., and Tan, W., Nat. Protocols, 2010, vol. 5, p. 1169.

    Article  CAS  PubMed  Google Scholar 

  29. Stoltenburg, R., Reinemann, C., and Strehlitz, B., Biomol. Eng., 2007, vol. 24, p. 381.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, V.-T., Kwon, Y.S., and Gu, M.B., Curr. Opin. Biotechnol., 2017, vol. 45, p. 15.

    Article  CAS  PubMed  Google Scholar 

  31. McCauley, T.G., Hamaguchi, N., and Stanton, M., Anal. Biochem., 2003, vol. 319, no. 2, p. 244.

    Article  CAS  PubMed  Google Scholar 

  32. Seo, H.B. and Gu, M.B., J. Biol. Eng., 2017, vol. 11, p. 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alipour, M., Zeinoddini, M., and Saeedinia, A.R., Appl. Biochem. Microbiol., 2018, vol. 54, no. 6, p. 677.

    Article  CAS  Google Scholar 

  34. Sun, W., Du, L., and Li, M., Curr. Pharm. Des., 2010, vol. 16, p. 2269.

    Article  CAS  PubMed  Google Scholar 

  35. Edogun, O., Chan, T.Y., Nguyen, N.H., Luu, A., and Halim, M., J. Visualized Exp., 2017, vol. 119.

  36. Ehrentreich-Forster, E., Orgel, D., Krause-Griep, A., Cech, B., Erdmann, VA., Bier, F., Scheller F.W., and Rimmele, M., Anal. Bioanal. Chem., 2008, vol. 391, p. 1793.

    Article  PubMed  CAS  Google Scholar 

  37. Shorie, M., Bhalla, V., Pathania, P., and Suri, C.R., Chem. Commun., 2014, vol. 50, p. 1080.

    Article  CAS  Google Scholar 

  38. Aaryasomayajula, V.S.R., Severs, T., Ghosh, K., DeLong, R., Zhang, X., Talapatra, S., and Wanekaya, A.K., J. Nanomed. Nanotechnol., 2014, vol. 5, 1000210.

    Article  Google Scholar 

  39. Chang, Y.-C., Yang, C.-Y., Sun, R.-L., Cheng, Y.-F., Kao, W.-C., and Yang, P.-C., Sci. Rep., 2013, vol. 3, p. 1863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ma, L., Ma, L., Su, M., and Wang, Z., Anal. Methods, 2014, vol. 6, p. 4366.

    Article  CAS  Google Scholar 

  41. Ragavan, K., Selvakumar, L., and Thakur, M., Chem. Commun., 2013, vol. 49, p. 5960.

    Article  CAS  Google Scholar 

  42. Yu, Y., Cao, Q., Zhou, M., and Cui, H., Biosens. Bioelectron., 2013, vol. 43, p. 137.

    Article  CAS  PubMed  Google Scholar 

  43. Azizi, A., Ranjbar, B., Moghadam, T.T., and Bagheri, Z., Plasmonics, 2014, vol. 9, p. 273.

    Article  CAS  Google Scholar 

  44. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature, 1996, vol. 382, p. 607.

    Article  CAS  PubMed  Google Scholar 

  45. Zarabi, M.F., Arshadi, N., Farhangi, A., and Akbarzadeh, A., Indian J. Clin. Biochem., 2014, vol. 29, p. 306.

    Article  CAS  PubMed  Google Scholar 

  46. Centi, S., Tombelli, S., Minunni, M., and Mascini, M., Anal. Chem., 2007, vol. 79, p. 1466.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, J. and Lu, Y., Angew. Chem. Int. Ed. Engl., 2006, vol. 118, p. 96.

    Article  Google Scholar 

  48. Zhou, Z., Du, Y., and Dong, S., Anal. Chem., 2011, vol. 83, p. 5122.

    Article  CAS  PubMed  Google Scholar 

  49. Deng, C., Chen, J., Nie, Z., Wang, M., Chu, X., Chen, X., Xiao, X., Lei, C., and Yao, S, Anal. Chem., 2008, vol. 81, p. 739.

    Article  CAS  Google Scholar 

  50. Yang, C., Wang, Y., Marty, J.-L., and Yang, X., Biosens. Bioelectron., 2011, vol. 26, no. 5, p. 2724.

    Article  CAS  PubMed  Google Scholar 

  51. Caygill, J.S., Davis, F., and Higson, S.P.J., Talanta, 2012, vol. 15, p. 14.

    Article  CAS  Google Scholar 

  52. Torshizi, R., Zeinoddini, M., Deldar, A.A., and Robatjazi, S.M., Int. J. Adv. Biotechnol. Res., 2016, vol. 7, p. 2361.

    Google Scholar 

  53. Barkheh, H., Zeinoddini, M., and Ranjbar, B., J. Police Med., 2016, vol. 5, p. 177.

    Google Scholar 

  54. Shankaran, D.R., Matsumoto, K., Toko, K., and Miura, N., Sens. Actuators, B, 2006, vol. 114, p. 71.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge Negar Nadafi for her significant contribution of this study.

Funding

The authors would like to gratefully acknowledge the research council of Tarbiat Modares University and Malek-Ashtar University of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Zeinoddini or Bijan Ranjbar.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkheh, H., Zeinoddini, M., Ranjbar, B. et al. A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles. J Anal Chem 76, 459–465 (2021). https://doi.org/10.1134/S1061934821040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821040031

Keywords:

Navigation