Skip to main content
Log in

Nanostructure-based electrochemical sensor for determination of glutathione in hemolysed erythrocytes and urine

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and selective electrochemical method was developed for the determination of glutathione (GSH) in hemolysed erythrocyte using vinylferocene modified carbon nanotubes paste electrode (VFMCNTPE). The results indicate that the electrode is efficient in terms of its electrocatalytic activity for the oxidation of GSH, leading to a reduced overpotential by more than 470 mV. Also, the values of catalytic rate constant (k), and diffusion coefficient (D) for GSH were calculated. The electrocatalytic oxidation peak current of GSH showed two linear dynamic ranges with a detection limit of 0.09 μM GSH. The linear calibration ranges were obtained between 0.2–4.0 and 4.0–250.0 μM GSH using square wave voltammetry (SWV) method. The proposed method was also examined as a selective, simple and precise electrochemical sensor for the determination of GSH in real samples such as urine and hemolysed erythrocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsson, A., Orrenius, S., Holmgren, A., and Manervik, B., Function of Glutathione. Biochemical, Physiological, Toxicological and Clinical Aspects, New York: Raven, 1983.

    Google Scholar 

  2. Gilbert, H.F., Meth. Enzymol., 1995, vol. 251, p. 8.

    Article  CAS  Google Scholar 

  3. Shan, X., Aw, T.Y., and Jones, D.P., Pharmacol. Ther., 1990, vol. 47, p. 61.

    Article  CAS  Google Scholar 

  4. Free Radicals, A Practical Approach / Eds Anderson, M.E., Punchard, N.A., and Kelly, F.J., Oxford: IRL Press, 1997.

  5. Simic, M.G., Mutat. Res., 1988, vol. 202, p. 377.

    Article  CAS  Google Scholar 

  6. Bounous, G., Anticancer Res., 2000, vol. 20, p. 4785.

    CAS  Google Scholar 

  7. Babbs, C.F., Bio. Med., 1990, vol. 8, p. 191.

    CAS  Google Scholar 

  8. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Butler Gralla, E., Selverstone, V. J., Ord, T., and Bredsen, T.E., Science, 1993, vol. 262, p. 1274.

    Article  CAS  Google Scholar 

  9. Nagendra, P., Yathirajan, H.S., and Rangappa, K.S., J. Indian Chem. Soc., 2002, vol. 79, p. 602.

    CAS  Google Scholar 

  10. Raggi, M., Nobile, L., and Giovannini, A.G., J. Pharm. Biomed. Anal., 1991, vol. 9, p. 1037.

    Article  CAS  Google Scholar 

  11. Kamata, K., Takahashi, M., Terajima, K., and Nishijima, M., Analyst, 1995, vol. 120, p. 2755.

    Article  CAS  Google Scholar 

  12. Liang, S.C., Wang, H., Zhang, Z. M., Zhang, X., and Zhang, H.S., Anal. Chim. Acta, 2002, vol. 451, p. 211.

    Article  CAS  Google Scholar 

  13. Zhang, J.Y., Hu, Z.D., and Chen, X.G., Talanta, 2005, vol. 65, p. 986.

    Article  CAS  Google Scholar 

  14. Kandar, R., Zakova, P., Lotkova, H., Kucera, O., and Cervinkova, Z., J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1382.

    Article  CAS  Google Scholar 

  15. Katrusiak, A.E., Paterson, P.G., and Kamencic, H., J. Chromatogr. B, 2001, vol. 758, p. 207.

    Article  CAS  Google Scholar 

  16. Xu, F., Wang, L., Gao, M., Jin, L., and Jin, J., Anal. Bioanal. Chem., 2002, vol. 372, p. 791.

    Article  CAS  Google Scholar 

  17. Causse, E., Malatray, P., Calaf, R., and Chariots, P., Candito, M., Bayle, C., Valdiguie, P., Salvayre, C., and Couderc, F., Electrophoresis, 2000, vol. 21, p. 2074.

    Article  CAS  Google Scholar 

  18. Rabenstein, D.L., Brown, D.W., and McNeil. C.J., Anal. Chem., 1985, vol. 57, p. 2294.

    Article  CAS  Google Scholar 

  19. Satoh, I., Arakawa, S., and Okamoto, A., Anal. Chim. Acta, 1988, vol. 214, p. 415.

    Article  CAS  Google Scholar 

  20. Ensafi, A.A., Khayamian, T., and Hasanpour, F.J., Pharm. Biomed. Anal., 2008, vol. 48, p. 140.

    Article  CAS  Google Scholar 

  21. Raoof, J.B., Ojani, R., and Karimi-Maleh, H., J. Appl. Electrochem., 2009, vol. 39, p. 1169.

    Article  CAS  Google Scholar 

  22. Raoof, J.B., Ojani, R., and Kolbadinezhad, M., J. Solid State Electrochem., 2009, vol. 13, p. 1411.

    CAS  Google Scholar 

  23. Ensafi, A.A., Taei, M., Khayamian, T., Karimi-Maleh, H., and Hasanpour, F., J. Solid State Electrochem., 2010, vol. 14, p. 1415.

    CAS  Google Scholar 

  24. Ensafi, A.A., Dadkhah-Tehrani, S., and Karimi-Maleh, H., Drug Test. Anal., 2011, DOI 10.1002/dta.347.

    Google Scholar 

  25. Ensafi, A.A., Dadkhah-Tehrani, S., and Karimi-Maleh, H., Anal. Sci., 2011, vol. 27, p. 409.

    Article  CAS  Google Scholar 

  26. Raoof, J.B., Ojani, R., Beitollahi, H., and Hosseinzadeh, R., Anal. Sci., 2006, vol. 22, p. 1213.

    Article  CAS  Google Scholar 

  27. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  Google Scholar 

  28. Fernandez, L. and Carrero, H., Electrochim. Acta, 2005, vol. 50, p. 1233.

    Article  CAS  Google Scholar 

  29. Tang, H., Chen, J., Nie, L., Yao, S., and Kuang, Y., Electrochim. Acta, 2006, vol. 51, p. 3046.

    Article  CAS  Google Scholar 

  30. Inoue, T. and Kirchhof, J.R., Anal. Chem., 2000, vol. 72, p. 5755.

    Article  CAS  Google Scholar 

  31. Calvo-Marzal, P., Chumbimuni-Torres, K.Y., Hoehr, N.F., and Kubota, L.T., Clinica Chim. Acta, 2006, vol. 371, p. 152.

    Article  CAS  Google Scholar 

  32. Moore, R.R., Banks, C.E., and Compton, R.G., Analyst, 2004, vol. 129, p. 755.

    Article  CAS  Google Scholar 

  33. Ensafi, A.A., Karimi-Maleh, H., Mallakpour, S., and Hatami, M., Sens. Actuators, B, 2011, vol. 155, p. 464.

    Article  CAS  Google Scholar 

  34. Ensafi, A.A., Karimi-Maleh, H., Ghiaci, M., and Arshadi, M., J. Mater. Chem., 2011, vol. 21, p. 15022.

    CAS  Google Scholar 

  35. Ensafi, A.A., Karimi-Maleh, H., and Mallakpour, S., Electroanalysis, 2011, vol. 23, p. 1478.

    Article  CAS  Google Scholar 

  36. Ensafi, A.A. and Karimi-Maleh, H., J. Electroanal. Chem., 2010, vol. 640, p. 75.

    Article  CAS  Google Scholar 

  37. George, L., Arch. Biochem. Biophys., 1959, vol. 82, p. 70.

    Article  Google Scholar 

  38. Maritan, A. and Toigo, F., Electrochim. Acta, 1990, vol. 35, p. 141.

    Article  CAS  Google Scholar 

  39. Galus, Z., Fundumentals of Electrochemical Analysis, New York: Ellis Horwood, 1976.

    Google Scholar 

  40. User Manual for Software FRA 4.9 (Autolab system), Eco Chemie B.V., The Netherlands 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ensafi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensafi, A.A., Monsef, M., Rezaei, B. et al. Nanostructure-based electrochemical sensor for determination of glutathione in hemolysed erythrocytes and urine. J Anal Chem 69, 892–898 (2014). https://doi.org/10.1134/S1061934814090068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934814090068

Keywords

Navigation