Skip to main content
Log in

Application of nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles in biosensing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique and decorated with gold nanoparticles (AuNPs) possessing diameter of 14.0 nm. Electron optical microscopy analysis reveals that decoration of N-MWCNTs with AuNPs does not have any influence on their bamboo-shaped configuration. The electrochemical response of fabricated composite films, further denoted as N-MWCNTs/AuNPs, towards oxidation of dopamine (DA) to dopamine-o-quinone (DAQ) in the presence of ascorbic acid (AA) and uric acid (UA) was probed in real pig serum by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). The findings demonstrate that N-MWCNTs/AuNPs exhibit slightly greater electrochemical response and sensitivity towards DA/DAQ compared to unmodified N-MWCNTs. It is, consequently, obvious that AuNPs improve significantly the electrochemical response and detection ability of N-MWCNTs. The electrochemical response of N-MWCNTs/AuNPs towards DA/DAQ seems to be significantly greater compared to that of conventional electrodes, such as platinum and glassy carbon. The findings reveal that N-MWCNTs/AuNPs could serve as powerful analytical sensor enabling analysis of DA in real serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ranganathan S, Kuo T, McCreery RL (1999) Anal Chem 71:3574–3580

    Article  CAS  Google Scholar 

  2. Sherigara BS, Kutner W, D’Souza F (2003) Electroanal 15:753–772

    Article  CAS  Google Scholar 

  3. Matzui LYu, Ovsienko IV, Len TA, Prylutskyy YuI, Scharff P (2005) Fuller Nanotub Carbon Nanostructures 13:259–265

  4. Ovsienko V, Len TA (2007) Matzui LYu, Prylutskyy YuI, Ritter U, Scharff P, Le Normand F, Eklund P. Mol Cryst Liq Cryst 468:289–297

    Google Scholar 

  5. Yun YH, Dong Z, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nano Today 2:30–37

    Article  Google Scholar 

  6. Zhou J, Zhang K, Liu J, Song G, Ye B (2012) Anal Methods 4:1350–1356

    Article  CAS  Google Scholar 

  7. Bakır ÇC, Şahin N, Polat R, Dursun Z (2011) J Electroanal Chem 662(2):275–280

    Article  Google Scholar 

  8. Song YZ, Li X, Song Y, Cheng ZP, Zhong H, Xu JM, Lu JS, Wei CG, Zhu AF, Wu FY, Xu J (2013) Russ J Phys Chem A 87:74–79

    Article  CAS  Google Scholar 

  9. Wu B, Ou Z, Ju X, Hou S (2011) J Nanomat 2011:1–6

    Google Scholar 

  10. Huffman ML, Venton BJ (2009) Analyst 134:18–24

    Article  CAS  PubMed  Google Scholar 

  11. Garris PA, Wightman RM (1994) J Physiology 478:239–249

    Article  CAS  Google Scholar 

  12. Wightman RM, May LJ, Michael AC (1988) Anal Chem 60:769A-793A

    Article  CAS  PubMed  Google Scholar 

  13. Mo JW, Ogoreve B (2001) Anal Chem 73:1196–1202

    Article  CAS  PubMed  Google Scholar 

  14. Sarre S, Michotte Y, Herregodts P, Deleu D, De Klippel N, Ebinger G (1992) J Chromatogr B 575:207–212

    Article  CAS  Google Scholar 

  15. Guan CL, Ouyang J, Li QL, Liu BH, Baeyens WRG (2000) Talanta 50:1197–1203

    Article  CAS  PubMed  Google Scholar 

  16. Kang TF, Shen GL, Yu RQ (1997) Anal Chim Acta 354:343–349

    Article  CAS  Google Scholar 

  17. Seçkin ZE, Volkan M (2005) Anal Chim Acta 547(1):104–108

    Article  Google Scholar 

  18. Dayton MA, Ewing AG, Wightman RM (1980) Anal Chem 52(14):2392–2396

    Article  CAS  Google Scholar 

  19. Tsierkezos NG, Ritter U (2012) J Solid State Electrochem 16:2217–2226

    Article  CAS  Google Scholar 

  20. Kang J, Zhuo L, Xiaoquan L, Xiaoqiang W (2005) J Solid State Electrochem 9:114–120

    Article  CAS  Google Scholar 

  21. Jin GP, Lin XQ, Ding YF (2006) J Solid State Electrochem 10:987–994

    Article  CAS  Google Scholar 

  22. Li NB, Ren W, Luo HQ (2008) J Solid State Electrochem 12:693–699

    Article  CAS  Google Scholar 

  23. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) J Solid State Electrochem 13:1433–1440

    Article  CAS  Google Scholar 

  24. Ti CC, Kumar AS, Chen SM (2009) J Solid State Electrochem 13:397–406

    Article  CAS  Google Scholar 

  25. Zhang L, Wang L (2013) J Solid State Electrochem 17:691–700

    Article  CAS  Google Scholar 

  26. Shieh YT, Lu YT, Wang TL, Yang CH, Lin RH (2014) J Solid State Electrochem 18:975–984

    Article  CAS  Google Scholar 

  27. Yang S, Li G, Yang R, Xia M, Qu L (2011) J Solid State Electrochem 15:1909–1918

    Article  CAS  Google Scholar 

  28. Zhang L, Shi Z, Lang Q (2011) J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  29. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electroanal 20:757–764

    Article  CAS  Google Scholar 

  30. Zhang R, Jin GD, Chen D, Hu XY (2009) Sensor Actuat B Chem 138:174–181

    Article  CAS  Google Scholar 

  31. Castro SSL, Mortimer RJ, de Oliveira MF, Stradiotto NR (2008) Sensors 8:1950–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Oliveira MI, Andrade Alves W (2011) ACS Appl Mater Interfaces 3:4437–4443

    Article  Google Scholar 

  33. Majewska UE, Chmurski K, Biesiada K, Olszyna AR, Bilewicza R (2006) Electroanal 18:1463–1470

    Article  CAS  Google Scholar 

  34. Rekha, Swamy BEK, Deepa R, Krishna V, Gilbert O, Chandra U, Sherigara BS (2009) Int J Electrochem Sci 4:832–845

  35. Huang J, Liu Y, Hou H, You T (2008) Biosens Bioelectron 24:632–637

    Article  CAS  PubMed  Google Scholar 

  36. Ensafi AA, Dadkhah-Tehrani S, Rezaei B (2010) J Serb Chem Soc 75(12):1685–1699

    Article  CAS  Google Scholar 

  37. Farhadi K, Kheiri F, Golzan M (2008) J Braz Chem Soc 19:1405–1412

    Article  CAS  Google Scholar 

  38. Zhang L, Wu J (2011) Sens Lett 9:1755–1766

    Article  CAS  Google Scholar 

  39. Rao CNR, Sen R (1998) Chem Commun 1525–1526

  40. Tsierkezos NG, Ritter U (2010) J Appl Electrochem 40:409–417

    Article  CAS  Google Scholar 

  41. Tsierkezos NG, Szroeder P, Ritter U (2011) Fullerenes Nanotubes Carbon Nanostruct 19:505–516

    Article  CAS  Google Scholar 

  42. Tsierkezos NG, Rathsmann E, Ritter U (2011) J Solution Chem 40:1645–1656

    Article  CAS  Google Scholar 

  43. Köhler JM, Li S, Knauer A (2013) Chem Eng Technol 36:887–899

    Article  Google Scholar 

  44. Hafermann L, Köhler JM (2015) Chem Eng Technol 38:1138–1143

    Article  CAS  Google Scholar 

  45. Tsierkezos NG, Philippopoulos AI, Ritter U (2010) J Solution Chem 39:897–908

    Article  CAS  Google Scholar 

  46. Tsierkezos NG, Puschner M, Ritter U, Knauer A, Hafermann L, Köhler JM (2016) Ionics 22:1957–1965

    Article  CAS  Google Scholar 

  47. Tsierkezos NG, Ritter U (2011) Phys Chem Liq 49:729–742

    Article  CAS  Google Scholar 

  48. Tsierkezos NG, Ritter U, Nugraha Thaha Y, Krischok S, Himmerlich M, Downing C (2015) Chem Phys Lett 639:217–224

  49. Szroeder P, Tsierkezos NG, Scharff P, Ritter U (2010) Carbon 48:4489–4496

    Article  CAS  Google Scholar 

  50. Katayama T, Araki H, Yoshino K (2002) J Appl Phys 91:6675–6678

    Article  CAS  Google Scholar 

  51. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN (1967) J Am Chem Soc 89:447–450

    Article  CAS  PubMed  Google Scholar 

  52. Zhu M, Huang XM, Li J, Shen HX (1997) Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  53. Sternson AW, McCreery R, Feinberg B, Adams RN (1973) J Electroanal Chem Interfacial Electrochem 46:313–321

    Article  CAS  Google Scholar 

  54. Kadish KM, Larson G (1977) Bioinorg Chem 7:95–105

    Article  CAS  PubMed  Google Scholar 

  55. Nicholson RS (1965) Anal Chem 37(11):1351–1355

    Article  CAS  Google Scholar 

  56. Nicholson RS, Shain I (1964) Anal Chem 36(4):706–723

    Article  CAS  Google Scholar 

  57. Yamaguchi T, Komura T, Hayashi S, Asano M, Niu GY, Takahashi K (2006) Electrochemistry 74(1):32–41

    Article  CAS  Google Scholar 

  58. Teófilo RF, Ceragioli HJ, Peterlevitz AC, Da Silva LM, Damos FS, Ferreira MMC, Baranauskas V, Kubota LT (2007) J Solid State Electrochem 11:1449–1457

    Article  Google Scholar 

  59. Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S (2021) Materials 14(21):6319 (37 pages)

  60. Poudyal DC, Satpati AK, Kumar S, Haram SK (2019) Mater Sci Eng C 103:109788 (9 pages)

  61. Owens JL, Marsh HA, Dryhurst G (1978) J Electroanal Chem 91:231–247

    CAS  Google Scholar 

  62. Karavidas P, Jannakoudakis D (1984) J Electroanal Chem 160(1–2):159–167

    Google Scholar 

  63. Karim-Nezhad G, Hasanzadeh M, Saghatforoush L, Shadjou N, Khalilzadeh B, Ershad S (2009) J Serb Chem Soc 74:581–593

    Article  CAS  Google Scholar 

  64. Narayana PV, Madhusudana Reddy T, Gopal P, Reddaiah K, Raghu P (2014) Res J Chem Sci 4:37–43

    CAS  Google Scholar 

  65. Thiagarajan S, Chen SM (2007) Talanta 74:212–222

    Article  CAS  PubMed  Google Scholar 

  66. Bari MR, Sabzi RE (2008) Asian J Chem 20:3357–3363

    CAS  Google Scholar 

  67. Arguello J (2008) leidens VL, Magossa HA, Ramos RR, Gushikem Y. Electrochim Acta 54:560–565

    Google Scholar 

  68. Zhang L (2008) Microchim Acta 161:191–200

    Article  CAS  Google Scholar 

  69. Menolasina S, Martín-Fernandez B, García-Iñigo FJ, López-Ruiz B (2011) Sens Lett 9:1670–1675

    Article  CAS  Google Scholar 

  70. Moldenhauer J, Meier M, Paul DW (2016) J Electrochem Soc 163:H672–H678

    Article  CAS  Google Scholar 

  71. Kurniawan F, Tsakova V, Mirsky VM (2009) J Nanosci Nanotechnol 9:2407–2412

    Article  CAS  PubMed  Google Scholar 

  72. Min K, Yoo YJ (2009) Talanta 80:1007–1011

    Article  CAS  PubMed  Google Scholar 

  73. Huong VT, Shimanouchi T, Quan DP, Umakoshi H, Viet PH, Kuboi R (2009) J Appl Electrochem 39:2035–2042

    Article  CAS  Google Scholar 

  74. Liu C, Liu H, Yang Q, Lin N, Song Y, Wang L, Cai X (2009) Adv Mat Res 60–61:311–314

    Google Scholar 

  75. Ben Aoun S (2017) R Soc Open Sci 4(11):171199

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fooladsaz K (2012) Int J Electrochem 7:9892–9908

    Article  CAS  Google Scholar 

  77. Bahrami E, Amini R, Vardak S (2020) J Alloys Compd 855(2):157292

    Google Scholar 

  78. Mazloum-Ardakani M, Khoshroo A (2014) Electrochim Acta 130:634–641

    Article  CAS  Google Scholar 

  79. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Biosens Bioelectron 25:2366–2369

    Article  CAS  PubMed  Google Scholar 

  80. Plowman BJ, Mahajan M, O’Mullane AP, Bhargava SK (2010) Electrochim Acta 55:8953–8959

    Article  CAS  Google Scholar 

  81. Krishnamoorthy K, Sudha V, Kumar SM (2018) J Alloys Compd 748:338–347

    Article  CAS  Google Scholar 

  82. Reddy S, Swamy BK, Jayadevappa H (2012) Electrochim Acta 61:78–86

    Article  CAS  Google Scholar 

  83. Lai GS, Zhang HL, Han DY (2008) Anal Lett 41:3088–3099

    Article  CAS  Google Scholar 

  84. Li B (2015) Biosens Bioelectron 67:121–128

    Article  CAS  PubMed  Google Scholar 

  85. Zheng Z, Qiu H, Zheng M, Weng S, Huang Z, Xian R, Lin X (2014) Anal Methods 6:7923–7927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. D. Schneider (TU Ilmenau) for the help in electrochemistry experiments, and Mr. Lars Haffermann (TU Ilmenau) for the fabrication of AuNPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1694 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsierkezos, N.G., Freiberger, E., Ritter, U. et al. Application of nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles in biosensing. J Solid State Electrochem 27, 2645–2658 (2023). https://doi.org/10.1007/s10008-023-05562-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05562-2

Keywords

Navigation