Skip to main content
Log in

Metal/Carbon Composites: Precursors for Obtaining New Sorbents-Catalysts

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract—

Obtaining new sorbents-catalysts with selective properties is of particular interest. A series of metal/activated carbon composites with sorption and catalytic properties has been obtained and studied: AC-Mn1, AC-Mn2, AC-Mn1S, AC-Mn2S, AC-Cu1, AC-Co1, and AC-0. The composites were obtained from local raw materials by the hydrothermal method. SEM EDX methods were used to determine the morphology of the particles of compounds in the carbon phase and the average elemental composition of the surface. The detection of crystalline phases and functional groups of the organic compounds in the samples was carried out with XRD method and FT-IR spectroscopy, respectively. The thermal stability of the researched materials was performed thermogravimetrically in the temperature range 20–700°C. All analyzed samples have a good thermal stability; the decomposition in air atmosphere begins at temperatures higher than 240°C. The physicochemical and sorption characteristics of the materials were studied by N2 sorption at –196°C. The tests have shown that the studied composites have the ability to transform (remove) nitrite ions in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yang, H., Li, J., Yang, J., Liu, Z., Yang, Q., and Li, C., Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage, Chem. Commun., 2007, vol. 10, no. 10, pp. 1086–1088. https://doi.org/10.1039/b614635j

    Article  CAS  Google Scholar 

  2. Yang, H., Zhang, L., Zhong, L., Yang, Q., and Li, C., Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages, Angew. Chem., 2007, vol. 46, no. 36, pp. 6861–6865. https://doi.org/10.1002/anie.200701747

    Article  CAS  Google Scholar 

  3. Yang, H., Zhang, L., Su, W., Yang, Q., and Li, C., Asymmetric ring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16 through the “ship in a bottle” strategy, J. Catal., 2007, vol. 248, no. 2, pp. 7204–7212. https://doi.org/10.1016/j.jcat.2007.03.006

    Article  CAS  Google Scholar 

  4. RF Patent 2252072 C2, 2005.

  5. US Patent 5733839A, 1998.

  6. Li, Z., Xie, K., and Slade, R.C., Studies of the interaction between CuCl and HY zeolite for preparing heterogeneous CuI catalyst, Appl. Catal., A., 2001, vol. 209, nos. 1–2, pp. 107–115. https://doi.org/10.1016/S0926-860X(00)00745-6

  7. Kuhn, P., Pale, P., Sommer, J., and Louis, B., Probing Cu-USY zeolite reactivity: Design of a green catalyst for the synthesis of diynes, Phys. Chem. C., 2009, vol. 113, no. 7, pp. 2903–2910. https://doi.org/10.1021/jp809772n

    Article  CAS  Google Scholar 

  8. Chassaing, S., Sani Souna Sido, A., Alix, A., Kumarraja, M., Pale, P., and Sommer, J., “Click chemistry” in zeolites: Copper(I) zeolites as new heterogeneous and ligand-free catalysts for the Huisgen [3+2] cycloaddition, Chemistry—A European Journal, 2008, vol. 14, no. 22, pp. 6713–6721. https://doi.org/10.1002/chem.200800479

    Article  CAS  PubMed  Google Scholar 

  9. Diz, P., Pernas, P., El Maatougui, A., et. al., Sol–gel entrapped Cu in a silica matrix: An efficient heterogeneous nanocatalyst for Huisgen and Ullmann intramolecular coupling reactions, Appl. Catal., A., 2015, vol. 502, pp. 86–95. https://doi.org/10.1016/j.apcata.2015.05.025

  10. Vilé, G., Di Liberto, G., Tosoni, S., et al., Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst, ACS Catal., 2022, vol. 12, no. 5, pp. 2947–2958. https://doi.org/10.1021/asccatal.1c05610

    Article  Google Scholar 

  11. Ethiraj, A.S. and Kang, D.J., Synthesis and characterization of CuO nanowires by a simple wet chemical method, Nanoscale Res. Lett., 2012, vol. 7, p. 70. https://doi.org/10.1186/1556-276X-7-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, P., An, J., Ye, Z., Cai, W., and Zheng, X., Cu-based multicomponent metallic mompound materials as electrocatalist for water splitting, Front. Chem., 2022, vol.10, p. 913874. https://doi.org/10.3389/fchem.2022.913874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rangaswamy, A., N Prasad, A., and M Reddy, B., Cu-based solid catalists: Applications in organic transformations for N-heterocyclic compounds, Curr. Org. Chem., 2017, vol. 21, no. 8, pp. 660–673.

    Article  CAS  Google Scholar 

  14. Trammell, R., Rajabimoghadam, K., and Garcia-Bosch, I., Copper-promoted functionalization of organic molecules: From biologically relevant Cu/O2 model systems to organometallic transformations, Chem. Rev., 2019, vol. 119, no. 4, pp. 2954–3031. https://doi.org/10.1021/acs.chemrev.8b00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aflak, N., Ben El Ayouchia, H., Bahsis, L., Anane, H., Julve, M., and Stiriba, S. E., Recent advances in copper-base solid heterogeneous catalists for azide alchyne cycloaddition reactios, Int. J. Mol. Sci., 2022, vol. 23, no. 4, p. 2383. https://doi.org/10.3390/ijns23042383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heravi, M.M., Heidari, B., Zadsirjan, V., and Mohammadi, L., Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations, RSC Adv., 2020, vol. 10, no. 42, pp. 24893–24940. https://doi.org/10.1039/D0RA02341H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dey, S. and Mehta N.S., Selection of manganese oxide catalysts for catalytic oxidation of carbon monoxide at ambient conditions, Resources, Environment and Sustainability, 2020, vol. 1, p. 100003. https://doi.org/10.1016/j.resenv.2020.100003

  18. Dey, S. and Kumar, V.P., The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation, CRGSC, 2020, vol. 3, p. 100012. https://doi.org/10.1016/j.crgsc.2020.100012

    Article  Google Scholar 

  19. Dardouri, R., Gannouni, A., and Zina, M.S., Structural and oxidative properties of manganese incorporated mesostructure silica for methane oxidation, Adv. Mater. Sci. Eng., 2019, vol. 2019, pp. 1–12. https://doi.org/10.1155/2019/6024876

    Article  CAS  Google Scholar 

  20. Khan, I., Sadiq, M., Khan, I., and Saeed, K., Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst, Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 5140–5154. https://doi.org/10.1007/s11356-018-4055-y

    Article  CAS  Google Scholar 

  21. Liu, P., Wei, G., He, H., Liang, X., Chen, H., Xi, Y., and Zhu, J., The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration, Appl. Surf. Sci., 2019, vol. 464, pp. 287–293. https://doi.org/10.1016/j.apsusc.2018.09.070

    Article  CAS  Google Scholar 

  22. Li, D., Wu, X., and Chen, Y., Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs, J. Phys. Chem. C, 2013, vol. 117, no. 21, pp. 11040–11046. https://doi.org/10.1021/jp312745n

    Article  CAS  Google Scholar 

  23. De Luna, M.D., Millanar, J.M., Yodsa-Nga, A., and Wantala, K., Gas phase catalytic oxidation of VOCs using hydrothermally synthesized nest-like K-OMS 2 catalyst, Sains Malays., 2017, vol. 46, no. 2, pp. 275−283. https://doi.org/10.17576/jsm-2017-4602-12

    Article  CAS  Google Scholar 

  24. Figueredo, M.J.M., Cocuzza, C., Bensaid, S., Fino, D., Piumetti, M., and Russo, N., Catalitic abatement of volatile organic compounds and soot over manganese oxide catalysts, Materials, 2021, vol. 14, no. 16, p. 4534. https://doi.org/10.3390/ma14164534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, W., Su, Z. A., Xu, Z., Yang, W., Peng, Y., and Li, J., Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates, Appl. Catal. B, 2020, vol. 260, p. 118150. https://doi.org/10.1016/j.apcatb.2019.118150

    Article  CAS  Google Scholar 

  26. CENTAUR. https://www.calgoncarbon.com/products/centaur/. Accessed February 22, 2023.

  27. CENTAUR 12x40, Data Sheet. https://www.calgoncarbon.com/app/uploads/DS-CENT12x4015-EIN-E1-1.pdf. Accessed February 22, 2023.

  28. Marczenko, Z., Spektrofotometryczne oznaczanie pierwiastków (Photometrical Determination of Elements), Warszawa: Wydawnictwa Naukowo-Techniczne, 1968.

  29. Zhang, J., Ying, Y., Li, X., and Yao, X., Evaluation of three kinds of nutshell with respect to utilization as culture media, Bioresources, 2018, vol. 13, no. 4, pp. 7508–7518. https://doi.org/10.15376/biores.13.4.7508-7518

    Article  CAS  Google Scholar 

  30. Wang, X. and Li, Y., Synthesis and formation mechanism of manganese dioxide nanowires/nanorods, Chem.-Eur. J., 2003, vol. 9. no. 1, pp. 300–306. https://doi.org/10.1002/chem.200390024

    Article  PubMed  Google Scholar 

  31. Zhang, H., Wu, A., Fu, H., et al., Efficient removal of Pb(II) ions using manganese oxides: The role of crystal structure, RSC Adv., 2017, vol. 7, no. 65, pp. 41228–41240. https://doi.org/10.1039/C7RA05955H

    Article  CAS  Google Scholar 

  32. Sannasi, V. and Subbian, K., Influence of Moringa oleifera gum on two polymorphs synthesis of MnO2 and evaluation of the pseudo-capacitance activity, J. Mater. Sci: Mater. Electron, 2020, vol. 31, no. 19, pp. 17120–17132. https://doi.org/10.1007/s10854-020-04272-z

    Article  CAS  Google Scholar 

  33. Thomas, P.S., Guerbois, J.P., Russell, G.F., and Briscoe, B.J., FTIR study of the thermal degradation of poly(vinyl alcohol), J. Therm. Anal. Calorim., 2001, vol. 64, pp. 501–508. https://doi.org/10.1023/A:1011578514047

    Article  CAS  Google Scholar 

  34. Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.A., Introduction in Spectroscopy, Washington, USA: Western Washington University Bellingham, 2013, 5th ed.

    Google Scholar 

  35. Kross, R.D. and Fassel, V.A., The infrared spectra of aromatic compounds. III. The 1045−1185 cm−1 vibration in monosubstituted benzenes, J. Am. Chem. Soc., 1955, vol. 77, no. 22, pp. 5858–5860. https://doi.org/10.1021/ja01627a025

    Article  CAS  Google Scholar 

  36. Parida, K.M. and Kanugo, S.B., Thermal decomposition characteristics in air and their relationship with electrochemical activity of different polymorphic forms of MnO2, Thermochim. Acta, 1983, vol. 66, nos. 1–3, pp. 275–287. https://doi.org/10.1016/0040-6031(93)85038-B

    Article  CAS  Google Scholar 

  37. Ali, M.M. and Williams, D.J., Insights of annealed PCz/β-MnO2 nanocomposites as potent material for high temperature applications, Chem. Phys. Lett., 2022, vol. 802, p. 139781. https://doi.org/10.1016/j.cplett.2022.139781

    Article  CAS  Google Scholar 

  38. Feng, L., Xuan, Z., Zhao, H., Bai, Y., Guo, J., Su, C.W., and Chen, X., MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery, Nanoscale Res. Lett., 2014, vol. 9, p. 290. https://doi.org/10.1186/1556-276X-9-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, R., Chen, T., Cao, Y., Wang, N., and Zhang, J., K+-stabilized nanostructured amorphous manganese dioxide: Excellent electrochemical properties as cathode material for sodium-ion batteries, Ionics, 2021, vol. 27, pp.1559–1567. https://doi.org/10.1007/s11581-020-03880-3

    Article  CAS  Google Scholar 

  40. Mihăilă, A., Lisa, C., Mămăligă, I., and Lisa, G., Kinetics of drying of certain lacquers and paints in isothermal conditions using a thermogravimetric analyser, J. Therm. Anal. Calorim., 2019, vol. 38, pp. 2315–2322. https://doi.org/10.1007/s10973-019-08779-4

    Article  CAS  Google Scholar 

  41. Jain, A., Balasubramanian, R., and Srinivasan, M.P., Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review, Chem. Eng. J., 2016, vol. 283, pp. 789–805. https://doi.org/10.1016/j.cej.2015.08.014

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Gh. Ghiletskii for his help in the X-ray diffraction study.

Funding

This research was carried out with the financial support of the National Agency for Research and Development, Chisinau, Moldova (Grant no. 20.80009.7007.21).

Author information

Authors and Affiliations

Authors

Contributions

Vasile Gutsanu: supervision, writing—review & editing. Oleg Petuhov: investigation, methodology. Alina-Mirela Ipati: data curation, conceptualization. Gabriela Lisa: investigation, methodology. Maria Botnaru: data curation, Conceptualization.

Corresponding author

Correspondence to V. Gutsanu.

Ethics declarations

The authors have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX A

APPENDIX A

Metal/Carbon Composites: Precursors for Obtaining New Sorbents-Catalysts”

Table A1.   Absorption bands in FT-IR spectra and their assignment [33, 34]
Fig. A1.
figure 9

SEM EDX for Centaur.

Fig. A2.
figure 10

XRD analysis of AC-0 (1), AC-Mn 1 (2), AC-Mn 1S (3), AC-Mn 2 (4), AC-Mn 2S (5) and AC- Co 1 (6).

Fig. A3.
figure 11

FT-IR spectra of MnO2 (1) and AC-0 (2).

Fig. A4.
figure 12

FT-IR spectra of AC-Mn1 (1) and AC-Mn2 (2).

Fig. A5.
figure 13

TG (a), DTG (b) and DTA (c) curves of AC-Cu1 (1), AC-Co1 (2), Centaur (3) and AC-0 (4).

Fig. A6.
figure 14

XRD analysis of AC-Mn1-t (a) and AC-Mn2-t (b).

Fig. A7.
figure 15

Nitrogen adsorption-desorption isotherms and the pore volume distribution curves of the analyzed samples Centaur and AC-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsanu, V., Petuhov, O., Ipate, AM. et al. Metal/Carbon Composites: Precursors for Obtaining New Sorbents-Catalysts. Colloid J 85, 871–888 (2023). https://doi.org/10.1134/S1061933X23600537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600537

Keywords:

Navigation