Skip to main content
Log in

On the Mechanisms of Coalescence of Nanodroplets and Sintering of Solid Particles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The droplet coalescence theory, which implies the refinement and further development of the Frenkel approach, has, for the first time, been used for predicting the characteristic time of coalescence of nanodroplets. The coalescence times obtained for gold nanodroplets agree, in the order of magnitude, with the results of our molecular-dynamics experiments. In addition, the characteristic times of coalescence have been evaluated theoretically for macroscopic droplets of epoxy resin. The results obtained are in good agreement with Geguzin’s experimental data. It has been concluded that the viscous flows arising in coalescing droplets and the corresponding dissipation of the surface free energy underlie the coalescence mechanism of not only macroscopic, but also nanosized droplets. At the same time, the results of our molecular-dynamics calculations and available experimental data indicate that the sintering of crystalline nanoparticles cannot be explained by the Frenkel mechanism of solid body viscous flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sauerwald, F., Kolloid-Z., 1943, vol. 104, p. 144.

    Article  CAS  Google Scholar 

  2. Frenkel', Ya.I., Zh. Eksp. Teor. Fiz., 1946, vol. 16, p. 29.

    CAS  Google Scholar 

  3. Pines, B.Ya., Usp. Fiz. Nauk, 1954, vol. 52, p. 501.

    Article  Google Scholar 

  4. Geguzin, Ya.E., Kaplya (Drop), Moscow: Nauka, 1973.

    Google Scholar 

  5. Geguzin, Ya.E., Fizika spekaniya (Physics of Sintering), Moscow: Nauka, 1984.

  6. Ristic, M.M. and Milosevic, S.D., Sci. Sinter., 2006, vol. 38, p. 7.

    Article  CAS  Google Scholar 

  7. Zachariah, M.R. and Carrier, M.J., J. Aerosol Sci., 1999, vol. 30, p. 1139

    Article  CAS  Google Scholar 

  8. Ivensen, V.A., Fenomenologiya spekaniya i nekotorye voprosy teorii (Sintering Phenomenology and Some Theoretical Problems), Moscow: Metallurgiya, 1985.

  9. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (The Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

  10. Morachevskii, A.G., Nauchno-Tekh. Vedom. SPbGU,Estestv. Inzh. Nauki, 2019, vol. 25, no. 2, p. 171.

    Google Scholar 

  11. Nichols, F.A. and Mullins, W.W., J. Appl. Phys., 1965, vol. 36, p. 1826.

    Article  Google Scholar 

  12. Lewis, J.L., Jensen, P., and Barrat, J.-L., Phys. Rev. B, 1997, vol. 56, p. 2248.

    Article  CAS  Google Scholar 

  13. Arcidiacono, S., Bieri, N.R., Poulikakos, D., and Grigoropoulos, C.P., Int. J. Multiphase Flow, 2004, vol. 30, p. 979.

    Article  CAS  Google Scholar 

  14. Pan, H., Ko, S.H., and Grigoropoulos, C.P., Appl. Phys. A, 2008, vol. 90, p. 247.

    Article  CAS  Google Scholar 

  15. Goudeli, E. and Pratsinis, S.E., AIChE J., 2015, vol. 62, p. 589.

    Article  Google Scholar 

  16. Yuk, J.M., Jeong, M., Kim, S.Y., Seo, H.K., Kim, J., and Lee, J.Y., Chem. Commun., 2013, vol. 49, p. 11479.

    Article  CAS  Google Scholar 

  17. Surrey, A., Pohl, D., Schultz, L., and Rellinghaus, B., Nano Lett., 2012, vol. 12, p. 6071.

    Article  CAS  Google Scholar 

  18. Alymov, M.I., Fiz. Khim. Obrab. Mater., 1999, no. 3, p. 60.

  19. Alymov, M.I., Averin, S.I., Tikhomirov, S.A., and Zelenskii, V.A., Metally, 2005, no. 5, p. 59.

  20. Sdobnyakov, N.Yu., Zykov, T.Yu., Kul’pin, D.A., Samsonov, V.M., Bazulev, A.N., and Sokolov, D.N., Poverkhnost’. Rentgen., Sinkhrotron. Neitron. Issled., 2010, no. 10, p. 86.

  21. Kolosov, A.Yu., Myasnichenko, V.S., Bogdanov, S.S., Romanovskii, V.I., Nepsha, N.I., Shcherbatykh, K.R., and Sdobnyakov, N.Yu., Fiz.-Khim. Aspects Stud. Clusters, Nanostruct., Nanomater., 2018, no. 10, p. 359.

  22. Samsonov, V.M., Alymov, M.I., Talyzin, I.V., and Vasilyev, S.A., J. Phys.: Conf. Ser., 2019, vol. 1352, no. 1, p. 012044.

    Google Scholar 

  23. Samsonov, V.M., Talyzin, I.V., Vasil’ev, S.A., and Alymov, M.I., Dokl., 2019, vol. 489, p. 465.

    Google Scholar 

  24. Chernin, I.Z., Smekhov, F.M., and Zherdev, Yu.V., Epoksidnye polimery i kompozitsii (Epoxy Polymers and Compositions), Moscow: Khimiya, 1982.

  25. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids),

  26. Adams, J.B., Foiles, S.M., and Wolfer, W.G., J. Mater. Res., 1989, vol. 4, p. 102.

    Article  CAS  Google Scholar 

  27. Buffat, Ph. and Borel, J.P., Phys. Rev. A, 1976, vol. 13, p. 2287.

    Article  CAS  Google Scholar 

  28. Castro, T., Reifenberger, R., Choi, E., and Andres, R.P., Phys. Rev. B, 1990, vol. 4, p. 8548.

    Article  Google Scholar 

  29. Dick, K., Dhanasekaran, T., Zhang, Z., and Meisel, D., J. Am. Chem. Soc., 2002, vol. 124, p. 2312.

    Article  CAS  Google Scholar 

  30. Samsonov, V.M., Vasil’ev, S.A., and Bembel’, A.G., Fiz. Met. Metalloved., 2016, vol. 117, p. 775.

    Google Scholar 

  31. Rusanov, A.I., Russ. J. Gen Chem., 2002, vol. 72, p. 493.

    Article  CAS  Google Scholar 

  32. Samsonov, V.M., Kharechkin, S.S., Gafner, S.L., Redel’, L.V., and Gafner, Yu.Ya., Kristallografiya, 2009, vol. 54, p. 530.

    Google Scholar 

  33. Qi, Y., Cagin, T., Johnson, W.L., and Goddard, W.A., J. Chem. Phys., 2001, vol. 115, p. 385.

    Article  CAS  Google Scholar 

  34. Ofte, D., J. Nucl. Mater., 1967, vol. 22, p. 28.

    Article  CAS  Google Scholar 

  35. Alchagirov, A.B., Alchairov, B.B., Taova, T.M., and Khokonov, K.B., Trans.JWRI, 2001, vol. 30, p. 287.

    CAS  Google Scholar 

  36. Rusanov, A.I., Termodinamika poverkhnostnykh yavlenii (Thermodynamics of Surface Phenomena), Le-ningrad: LGU, 1960.

  37. Vitol’, E.N., Kolloidn. Zh., 1992, vol. 54, p. 21.

    Google Scholar 

  38. Sdobnyakov, N.Yu., Samsonov, V.M., Bazulev, A.N., and Novozhilova, D.A., Bull. Russ. Acad. Sci.: Fiz., 2017, vol. 81, p. 380.

    Article  CAS  Google Scholar 

  39. Menchaca-Rocha, A., Martínez-Dávalos, A., Nuñez, R., Popinet, S., and Zaleski, S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 63, 046309.

    Article  CAS  Google Scholar 

  40. Geguzin, Ya.E., Kalinin, V.V., and Makarovskii, N.A., Dokl. Akad. Nauk SSSR, 1974, vol. 218, p. 1319.

    Google Scholar 

  41. Kuczynski, G.C., JOM, 1949, vol. 1, p. 169.

    Article  CAS  Google Scholar 

  42. Missiaen, J.M., Voytovich, R., Jilles, B., and Eustathopoulos, N., J. Mater. Sci., 2005, vol. 40, p. 2377.

    Article  CAS  Google Scholar 

  43. Samsonov, V.M., Bembel’, A.G., Samsonov, T.E., Popov, I.V., and Vasilyev, S.A., Nanotekhnol. Russ., 2016, vol. 11, nos. 9–10, p. 553.

  44. Samsonov, V.M., Bembel, A.G., Popov, I.V., Vasilyev, S.A., and Talyzin, I.V., Surf. Innov., 2017, vol. 5, no. 3, p. 161.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Science of the Russian Federation within the framework of the state assignment No. 0817-2020-0007 in the field of the scientific activity as well as in the framework of Governmental Program for ISMAN (topic no. 45.5) (regularities and mechanisms of coalescence and sintering) and the Russian Foundation for Basis Research, project no. 18-03-00132 (study of the size dependence of melting temperature).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Talyzin, I.V., Vasilyev, S.A. et al. On the Mechanisms of Coalescence of Nanodroplets and Sintering of Solid Particles. Colloid J 82, 573–583 (2020). https://doi.org/10.1134/S1061933X20050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050154

Navigation