Skip to main content
Log in

Mechanisms of Coalescence of Metallic Nanodroplets and Sintering of Metallic Nanoparticles

  • TECHNICAL PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The regularities and mechanisms of coalescence of Au nanodroplets and sintering of solid Au nanoparticles are investigated using molecular dynamics experiments and some theoretical models. It is established that the characteristic time of coalescence τ is proportional to the radius r0 of the original nanodroplets. Both the conclusion and the quantitative estimations of the proportionality coefficient between τ and r0 agree with Frenkel’s theory (1946), yet this theory was proposed for describing the coalescence of macroscopic droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. F. Sauerwald, Kolloid-Zeitschrift 104, 144 (1943). https://doi.org/10.1007/BF01519441

    Article  Google Scholar 

  2. Ya. I. Frenkel, J. Phys. (USSR) 9, 385 (1945).

    Google Scholar 

  3. Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984).

    Google Scholar 

  4. B. Ya. Pines, Usp. Fiz. Nauk 52, 501 (1954). https://doi.org/10.3367/UFNr.0052.195404a.0501

    Article  Google Scholar 

  5. V. A. Ivensen, Phenomenology of Sintering and Some Theoretical Issues (Metallurgiya, Moscow, 1985).

    Google Scholar 

  6. M. I. Alymov, Phys. and Chem. of Materials Processing 3, 62 (1999).

    Google Scholar 

  7. M. I. Alymov, S. I. Averin, S. A. Tikhomirov, and V. A. Zelenskij, Russ. Metall. (Engl. Transl.), No. 5, 427 (2005).

  8. J. L. Lewis, P. Jensen, and J.-L. Barrat, Phys. Rev. B 56, 2248.  https://doi.org/10.1103/PhysRevB.56.2248

    Article  ADS  Google Scholar 

  9. E. Goudeli and S. E. Pratsinis, AIChE J. 62, 589 (2015). https://doi.org/10.1002/aic.15125

    Article  Google Scholar 

  10. F. A. Nichols and W. W. Mullins, J. Applied Physics 36, 1826 (1965).  https://doi.org/10.1063/1.1714360

    Article  ADS  Google Scholar 

  11. J. M. Yuk, M. Jeong, S. Y. Kim, H. K. Seo, J. Kim, and J. Y. Lee, Chem. Commun. 49 (2013). https://doi.org/10.1039/C3CC46545D

    Article  Google Scholar 

  12. A. Surrey, D. Pohl, L. Schultz, and B. Rellinghaus, Nano Lett. 12, 6071 (2012).  https://doi.org/10.1021/nl302280x

    Article  ADS  Google Scholar 

  13. J. B. Adams, S. M. Foiles, and W. G. Wolfer, J. Mater. Res. 4, 102 (1989).  https://doi.org/10.1557/JMR.1989.0102

    Article  ADS  Google Scholar 

  14. A. B. Alchagirov, B. B. Alchagirov, T. M. Taova, et al., Trans. JWRI 30, 287 (2001).

    Google Scholar 

  15. D. Ofte, J. Nucl. Mater. 22, 28 (1967).  https://doi.org/10.1016/0022-3115(67)90105-5

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Tver State University) and in the framework of the state task program in the field of scientific activity for ISMAN RAS (theme 45.5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Samsonov, I. V. Talyzin, S. A. Vasilyev or M. I. Alymov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Talyzin, I.V., Vasilyev, S.A. et al. Mechanisms of Coalescence of Metallic Nanodroplets and Sintering of Metallic Nanoparticles. Dokl. Phys. 64, 453–455 (2019). https://doi.org/10.1134/S1028335819120061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819120061

Navigation