Skip to main content
Log in

Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Coalescence of metal nanodroplets and sintering of solid Au, Pd, and Pt nanoparticles were simulated using isothermal molecular dynamics and the embedded-atom method. It was found that the scheme describing sintering of solid nanoparticles transfers to the coalescence scheme not at the nanoparticle melting point Tm, but at a lower characteristic temperature T0 ≈ 0.9 Tm, which can be interpreted as a critical temperature corresponding to the bifurcation phenomenon. The bifurcation in question indicates that at the same fixed temperature in the range from (T0 − 2 K) to (T0 + 2 K) daughter nanoparticles containing the same number of atoms can be either liquid-like (coalescence) or crystalline (sintering).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Goudeli, S. E. Pratsinis, Adv. Mater.: Thermod. Molec.-Scale Phen., 2016, 62, 589; DOI: https://doi.org/10.1002/aic.15125.

    CAS  Google Scholar 

  2. P. Grammatikopoulos, M. Sowwan, J. Kioseoglou, Adv. Theory Simul., 2019, 2, 1900013; DOI: https://doi.org/10.1002/adts.201970019.

    Article  Google Scholar 

  3. V. M. Samsonov, I. V. Talyzin, S. A. Vasilyev, M. I. Alymov, Colloid. J., 2020, 82, 573; DOI: https://doi.org/10.1134/S1061933X20050154.

    Article  CAS  Google Scholar 

  4. V. M. Samsonov, M. I. Alymov, I. V. Talyzin, S. A. Vasilyev, J. Phys.: Conf. Ser., 2019, 1352, 012044; DOI: https://doi.org/10.1088/1742-6596/1352/1/012044.

    Google Scholar 

  5. V. M. Samsonov, I. V. Talyzin, S. A. Vasilyev, M. I. Alymov, Dokl. Phys., 2019, 64, 11; DOI: https://doi.org/10.1134/S1028335819120061.

    Article  Google Scholar 

  6. R. A. Andrievsky, Osnovy nanostrukturnogo materialovedeniya [Fundamentals of Nanostructural Materials Science], BINOM. Laboratoriya znaniy, Moscow, 2019, 252 pp. (in Russian).

    Google Scholar 

  7. N. N. Volkova, L. M. Bogdanova, V. T. Volkov, A. V. Karabulin, V. I. Matyushenko, M. G. Spirin, Russ. Chem. Bull., 2021, 70, 1690; DOI: https://doi.org/10.1007/s11172-021-3271-7.

    Article  CAS  Google Scholar 

  8. N. A. Yashtulov, V. O. Zenchenko, M. V. Lebedeva, V. M. Samoilov, O. K. Karimov, V. R. Flid, Russ. Chem. Bull., 2016, 65, 133; DOI: https://doi.org/10.1007/s11172-016-1275-5.

    Article  CAS  Google Scholar 

  9. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, D. A. Yavsin, Russ. Chem. Bull., 2014, 63, 1696; DOI: https://doi.org/10.1007/s11172-014-0655-y.

    Article  CAS  Google Scholar 

  10. T. N. Rostovshchikova, E. S. Lokteva, M. I. Shilina, E. V. Golubina, K. I. Maslakov, I. N. Krotova, A. A. Bryzhin, I. G. Tarkhanova, O. V. Udalova, V. M. Kozhevin, D. A. Yavsin, S. A. Gurevich, Russ. J. Phys. Chem. A, 2021, 95, 451; DOI: https://doi.org/10.1134/S0036024421030171.

    Article  CAS  Google Scholar 

  11. Y. Dai, P. Lu, Z. Cao, C. T. Campbell, Y. Xia, Chem. Soc. Rev., 2018, 47, 4314; DOI: https://doi.org/10.1039/C7CS00650K.

    Article  CAS  Google Scholar 

  12. A. Surrey, D. Pohl, L. Schultz, B. Rellinghaus, Nano Letters, 2012, 12, 6071; DOI: https://doi.org/10.1021/n1302280x.

    Article  CAS  Google Scholar 

  13. J. M. Yuk, M. Jeong, S. Y. Kim, H. K. Seo, J. Kim, J. Y. Lee, Chem. Commun., 2013, 49, 11479; DOI: https://doi.org/10.1039/C3CC46545D.

    Article  CAS  Google Scholar 

  14. H. Pan, S. H. Ko, C. P. Grigoropoulos, Appl. Phys. A, 2008, 90, 247; DOI: https://doi.org/10.1007/s00339-007-4320-2.

    Article  CAS  Google Scholar 

  15. H. Shirakawa, H. Komiyama, J. Nanopart. Res., 1999, 1, 17; DOI: https://doi.org/10.1023/A:1010085430195.

    Article  CAS  Google Scholar 

  16. B. Ingham, T. H. Lim, C. J. Dotzler, A. Henning, M. F. Toney, R. D. Tilley, Chem. Mater., 2011, 23, 3312; DOI: https://doi.org/10.1021/cm200354d.

    Article  CAS  Google Scholar 

  17. J. Sun, D. Ma, H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfander, D. Su, J. Am. Chem. Soc., 2006, 128, 15756; DOI: https://doi.org/10.1021/ja064884j.

    Article  CAS  Google Scholar 

  18. J. L. Lewis, P. Jensen, J.-L. Barrat, Phys. Rev. B, 1997, 56, 2248; DOI: https://doi.org/10.1103/PhysRevB.56.2248.

    Article  CAS  Google Scholar 

  19. M. R. Zachariah, M. J. Carrier, J. Aerosol. Sci., 1999, 30, 1139; DOI: https://doi.org/10.1016/S0021-8502(98)00782-4.

    Article  CAS  Google Scholar 

  20. S. Arcidiacono, N. R. Bieri, D. Poulikakos, C. P. Grigoropoulos, Int. J. Multiphas Flow, 2004, 30, 979; DOI: https://doi.org/10.1016/j.multiphaseflow.2004.03.006.

    Article  CAS  Google Scholar 

  21. M. I. Alymov, A. A. Timofeev, A. G. Gnedovets, Nanotechnologies in Russia, 2013, 8, 727; DOI: https://doi.org/10.1134/S1995078013060037.

    Article  Google Scholar 

  22. V. V. Puytov, I. V. Talyzin, V. M. Samsonov, arXiv, 2021, 2106.14772.

  23. V. M. Samsonov, V. V. Puytov, I. V. Talyzin, J. Phys.: Conf. Ser., 2021, 2052, 012037; DOI: https://doi.org/10.1088/1742-6596/2052/1/012037.

    Google Scholar 

  24. J. B. Adams, S. M. Foiles, W. G. Wolfer, J. Mater. Res., 1989, 4, 102; DOI: https://doi.org/10.1557/JMR.1989.0102.

    Article  CAS  Google Scholar 

  25. V. M. Samsonov, S. A. Vasilyev, K. K. Nebyvalova, I. V. Talyzin, N. Yu. Sdobnyakov, D. N. Sokolov, M. I. Alymov, J. Nanopart. Res., 2020, 22, 247; DOI: https://doi.org/10.1007/s11051-020-04923-6.

    Article  CAS  Google Scholar 

  26. Fizicheskie velichiny. Spravochnik [Physical Values. Handbook], Energoatomizdat, Moscow, 1991, p. 289 (in Russian).

  27. I. S. Zamulin, S. L. Gafner, Fundamental’nye problemy sovremennogo materialovedeniya [Fundamental Problems of Modern Materials Science], 2012, 9, 265 (in Russian).

    Google Scholar 

  28. F. Cleri, V. Rosato, Phys. Rev. B, 1993, 48, 22; DOI: https://doi.org/10.1103/PhysRevB.48.22.

    Article  CAS  Google Scholar 

  29. J. G. Dash, Contemp. Phys., 1989, 30, 89; DOI: https://doi.org/10.1080/00107518908225509.

    Article  CAS  Google Scholar 

  30. B. N. Bushmanov, Yu. A. Khromov, Fizika tverdogo tela [Solid State Physics], Vysshaya shkola, Moscow, 1971, p. 52 (in Russian).

    Google Scholar 

  31. A. V. Bolesta, I. F. Golovnev, V. M. Fomin, Phys. Mesomech., 2001, 4, 5.

    CAS  Google Scholar 

  32. A. Yu. Kolosov, N. Yu. Sdobnyakov, P. V. Komarov, N. V. Novozhilov, V. A. Khashin, D. N. Sokolov, Nanotekhnika [Nanotechnique], 2013, 34, 65 (in Russian).

    Google Scholar 

  33. V. M. Samsonov, S. A. Vasilyev, I. V. Talyzin, Yu. A. Ryzhkov, JETP Lett., 2016, 103, 94; DOI: https://doi.org/10.1134/S0021364016020119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Additional information

Based on the materials of the XXXIII Symposium “Modern Chemical Physics” (September 24–October 4, 2021, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 686–693, April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puytov, V.V., Romanov, A.A., Talyzin, I.V. et al. Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation. Russ Chem Bull 71, 686–693 (2022). https://doi.org/10.1007/s11172-022-3466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3466-6

Key words

Navigation