Skip to main content
Log in

Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Mechanical activation has been employed to produce highly reactive energy-saturated Mg/(-C2F4-) n composites, chemical transformations in which are initiated by either heating or shock-wave loading. The structure and reactivity of these composites have been analyzed with the use of X-ray diffraction, microscopy, thermogravimetry, calorimetry, and the measurement of combustion and detonation velocities. Mechanical activation is accompanied by the formation of a magnesium/fluoroplastic composite structure with the intercomponent contact area as large as 6 m2/g and accumulation of chaotically arranged dislocations to concentrations as high as 6 × 1010 cm−2, basal and prismatic deformation stacking faults (the maximum probabilities of their formation are 2.1 and 1.4%, respectively), and boundaries of coherent-scattering regions in magnesium. In fluoroplastic, disordering and partial amorphization of the structure take place. Mechanical activation leads to a dramatic increase in the propagation velocity of Mg + (-C2F4-) n → MgF2 + C chemical reaction in the explosive combustion regime (to 400 m/s) and the development of knocking combustion, in which the reaction propagates at a velocity as high as 1100 m/s. The optimal dose of mechanical activation (7–8 kJ/g), at which the maximum velocity of reaction propagation is reached, has been determined. The use of a “slow” heating in the cell of a calorimeter in combination with the mass-spectral analysis of evolved gases has made it possible to distinguish processes of three types in the thermally activated interaction between magnesium and fluoroplastic. The formation of MgF2 at temperatures below 300°C seems to be due to the interaction between defects in magnesium (dislocations and stacking faults) and macromolecules. The reaction occurring at 300–420°C with a slight thermal effect is caused by the solid-phase interaction between magnesium and fluoroplastic brought in contact with one another. The main contribution to the conversion is made by the processes that take place at temperatures above 420°C and are relevant to the thermal depolymerization of fluoroplastic. The layered structure of the composite and the large area of the intercomponent contact ensure the penetration of gaseous products of depolymerization into the bulk of magnesium particles and the completeness of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanarayana, C., Prog. Mater. Sci., 2001, vol. 46, p. 1.

    Article  CAS  Google Scholar 

  2. Boldyrev, V.V., Usp. Khim., 2006, vol. 75, p. 3.

    Article  Google Scholar 

  3. Boldyrev, V.V., Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamentals of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies), Avvakumov, E.G., Ed., Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2009.

  4. Grigor’eva, T.F., Barinova, A.P., and Lyakhov, N.Z., Mekhanokhimicheskii sintez v metallicheskikh sistemakh (Mechanochemical Synthesis in Metal Systems), Novosibirsk: Parallel’, 2008.

    Google Scholar 

  5. Butyagin, P.Yu. and Streletskii, A.N., in Experimental and Theoretical Studies in Modern Mechanochemistry, Transworld Research Network, p. 87.

  6. Streletskii, A.N., Kolbanev, I.V., Borunova, A.B., and Butyagin, P.Yu., in Experimental and Theoretical Studies in Modern Mechanochemistry, Transworld Research Network, p. 192.

  7. Baláž P., Achimovičová M., Baláž M., Billik P., Cherkezova-Zheleva Z., Criado J.M., Delogu F., Dutková E., Gaffet E., Martinéz F.G.J., Kumar R., Mitov I., Rojac T., Senna M., Streletskii A., Wieczorek-Ciurowa K, Chem. Soc. Rev. 2013. vol. 42. p. 7571.

    Article  Google Scholar 

  8. Dolgoborodov, A.Yu., Makhov, M.N., Kolbanev, I.V., and Streletskii, A.N., USSR Inventor’s Certificate no. 2235085, Byull. Izobret., 2004, no. 24.

    Google Scholar 

  9. Dolgoborodov, A.Yu., Makhov, M.N., Streletskii, A.N., Kolbanev, I.V., Gogulya, M.F., and Fortov, V.E., Khim. Fiz., 2004, vol. 23, no. 9, p. 85.

    Google Scholar 

  10. Dolgoborodov, A.Yu., Streletskii, A.N., Makhov, M.N., Kolbanev, I.V., and Fortov, V.E., Khim. Fiz., 2007, vol. 25, no. 12, p. 40.

    Google Scholar 

  11. Dolgoborodov, A.Yu., Makhov, M.N., Kolbanev, I.V., Streletskii, A.N., and Fortov, V.E., Pis’ma Zh. Eksp. Teor. Fiz., 2005, vol. 81, p. 395.

    Google Scholar 

  12. Dolgoborodov, A.Yu., Streletskii, A.N., Makhov, M.N., Teselkin, V.A., Guseinov, Sh.L., Storozhenko, P.A., and Fortov, V.E., Khim. Fiz., 2012, vol. 31, no. 8, p. 37.

    CAS  Google Scholar 

  13. Dreizin, E.L., Prog. Energy Combust. Sci., 2009, vol. 35, p. 141.

    Article  CAS  Google Scholar 

  14. Dreizin, E.L. and Schoenitz, M., US Patent 7,524,355 B2, 2009.

  15. Stamatis, D., Dreizin, E.L., and Higa, K., Combust. Flame, 2011, vol. 158, p. 1631.

    Article  CAS  Google Scholar 

  16. Wang, Y., Jiang, W., Zhang, X., Liu, H., Liu, Y., and Li, F., Thermochim. Acta, 2011, vol. 512, p. 233.

    Article  CAS  Google Scholar 

  17. Wang, Y., Jiang, W., Liang, L., Liu, H., Liu, Y., and Li, F., Rare Metal Mater. Eng., 2012, vol. 41, p. 9.

    Article  Google Scholar 

  18. Watson, K.W., Pantoya, M.L., and Levitas, V.I., Combust. Flame, 2008, vol. 155, p. 619.

    Article  CAS  Google Scholar 

  19. Streletskii, A.N., Kolbanev, I.V., Teselkin, V.A., Leonov, A.V., Mudretsova, S.N., Sivak, M.V., and Dolgoborodov, A.Yu., Khim. Fiz., 2015, vol. 34, no. 2.

    Google Scholar 

  20. Streletskii, A.N., Abstracts of Papers, 2 Int. Conf. on Structural Applications of Mechanical Alloying, De Barbadillo, J.J., Ed., Canada, 1993, p. 51.

  21. Krishnan, R., Z. Metallkunde, 1967, vol. 58, p. 811.

    CAS  Google Scholar 

  22. Warren, B.E., Prog. Met. Phys., 1958, vol. 8, p. 147.

    Article  Google Scholar 

  23. Shishmakov, A.S., Mirzaev, D.A., Khmelinin, Yu.F., and Adamesku, R.A., Fiz. Met. Metalloved., 1974, vol. 37, p. 313.

    CAS  Google Scholar 

  24. Umanskii, Ya.S, Skakov, Yu.A., Ivanov, A.N., and Rastorguev, L.N., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, X-ray Diffraction Analysis and Electron Microscopy), Moscow: Metallurgiya, 1982.

    Google Scholar 

  25. Starkweather, H.W., J. Polym. Sci., Part B: Polym. Phys., 1982, vol. 20, p. 751.

    CAS  Google Scholar 

  26. Gurvich, L.V., Karachentsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K., and Khodeev, Yu.S., Energiya razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Energy of Chemical Bond Scission. Ionization Potentials and Electron Affinity), Moscow: Nauka, 1974.

    Google Scholar 

  27. Zakrevskii, V.A., Tomashevskii, E.E., and Baptizmanskii, V.V., Vysokomol. Soedin., Ser. B, 1970, vol. 12, p. 419.

    CAS  Google Scholar 

  28. Radtsig, V.A., Doctoral (Chem.) Dissertation, Moscow: Inst. of Chemical Physics, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © A.N. Streletskii, I.V. Kolbanev, A.V. Leonov, A.Yu. Dolgoborodov, G.A. Vorob’eva, M.V. Sivak, D.G. Permenov, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 2, pp. 225–237.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streletskii, A.N., Kolbanev, I.V., Leonov, A.V. et al. Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites. Colloid J 77, 213–225 (2015). https://doi.org/10.1134/S1061933X15020180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15020180

Keywords

Navigation